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EVALUATION MODEL OF THE RECOVERY PROCESSES OF NON-MARKOVIAN
SYSTEMS, CONSIDERING THE ELEMENTS UNRELIABILITY UNDER
ARBITRARY DISTRIBUTION LAWS

Abstract. The subject of the study is the reliability of recoverable non—-Markovian systems, functioning of which is
described by arbitrary distribution laws. The purpose of the article is to develop a mathematical model of the functioning of
modern computer systems under arbitrary laws of the distribution of stay duration in each of the states, taking into account
the recovery system and the provision of spare elements. The main task is to develop an adequate model of the system
functioning process, taking into account the non-Markovian character of the processes occurring in the system, its possible
large dimension, and the presence of a hierarchical recovery system. Based on this model, a method for calculating the
density of the system recovery time distribution has been developed. At the same time, a universal four-parameter
distribution is proposed to describe random processes occurring in the system. Using this approximation, the calculation of
the desired parameter of the recovery flow is performed by solving the Volterra integral equation with a difference kernel.

Keywords: restoration of non-Markovian systems; mathematical model of reliability; density of the recovery time

distribution.

Introduction

Problem Statement. In the last decade, due to the
wide spread of the Internet, the so—called “cloud
technologies” have been rapidly developing, structurally
implemented as complex software and hardware
complexes representing Multi-Position  Distributed
Systems (MPDS). From the hardware point of view,
these are complex, spatially and functionally distributed
multi-level hierarchical structures consisting of many
functional subsystems - groups of radio electronic and
computer systems (RECS), united by means of network
communication and control. The main features of the
MPDS in comparison with single-position systems are
as follows: presence of structural and information
redundancy arising from the interaction of RECS

groups, use of spatial-temporal methods of
multidimensional ~ processing  of  measurement
information, large amounts of data (BigData

technology), unified synchronization of connections
between the systems included in MPDS, variety of
principles of RECS technical implementation and
computational means of ensuring the “cloud” storage,
information  processing and transmission, high
requirements for the reliability of elements and
subsystems, etc.

In the process of functioning, elements and
modules of all subsystems often fail. The concept of
failure is understood as a complete or partial loss of
operability by object, which is a consequence of
environmental factors impact (temperature, humidity,
vibration), internal physical-chemical processes, as well
as continuous operation in loaded modes, violations of
operating modes, maintenance, software failures, etc.

In order to guarantee the high reliability of such
complex long-term MPDS for their hardware
component, the following methods of reliability
increasing are currently used [1-4, 6, 9, 11]:

e redundancy of unreliable or
important elements and their blocks;

especially

e reducing the failure rate of elements and the
entire system;

e reduction of continuous operation time in
especially loaded modes;

e reduction of the average recovery time, etc...

In order to guarantee high reliability and efficiency
of MPDS, based on the possibilities of practical
implementation and the degree of efficiency, the most
significant for the hardware component of MPDS is the
formation of self-control system and spare standard
elements provision (SCSSSEP). At the same time, each
individual RECS is given a set of standard spare parts
containing a certain number of replacement elements of
all necessary types. To replenish the spare parts SPTA,
a group (SPTA-G) is used, which is attached to the
entire MPDS both to replenish the spare parts and to
ensure reliability for certain types absent in the
nomenclature of single spare parts. In addition, a
common repair body (RB) is distinguished in the
structure of the entire SCSSSEP, the functioning of
which consists in eliminating failures by identifying and
replacing (repairing) hierarchically smaller failed
structural elements in faulty elements [4-6, 11].

To solve the problem of optimal synthesis of
restoration and maintenance system SCSSSEP of
MPDS, it is necessary to develop methods for analyzing
the effectiveness of RECS functioning together with
SCSSSEP, using the parameters of the structure and
configuration of the spare parts and providing a target
function of the form

P=f(X),

where P is the efficiency indicator of MPDS, X is the
vector of SCSSSEP parameters. To construct
mathematical models of the functioning of both
individual RECS and MPDS, the theory of random
processes and queuing theory are used today in the vast
majority of cases, focused mainly on the exponential
distribution of failure and recovery flows [1-6, 9, 12-
17]. Several types of indicators are recommended to
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evaluate the effectiveness of modern RECS, taking into
account the reliability. The main ones are [1,3,11]:

e probability of uptime for a given time
to: P(ty) ;

* average operating time to failure: T, ;

e average recovery time: Ty ;

o system availability coefficient for reliability
Kgr;

o operational readiness coefficient for time ty:

R(to) -

It should be noted that the traditionally used
models for evaluating the MPDS effectiveness, taking
into account the reliability of its elements, are focused
on assumptions about the exponential distribution of the
uptime of all types of elements and their recovery time,
and about the relatively small dimension of tasks. This
ensures the formation of elegant and simple
mathematical models, but, of course, imposes certain
limitations on the level of accuracy of the results
obtained using these models. Analysis of the problems
RECS with SCSSSEP effectiveness evaluation shows
[1-6,9,11], that only particular problems of this problem
can be solved by existing analytical methods using
sufficiently strict restrictions on the number of
variables, the laws of distribution of failure flows and
recoveries, the structure and options for SCSSSEP
construction, maintenance  processes using the
assumption that maintenance updates the system
completely.

Thus, the tasks of analyzing the effectiveness of
MPDS functioning, taking into account the structure,
composition, options for strategies for replenishment,
control and maintenance of spare parts kits, as well as
the synthesis of hierarchical spare parts of the optimal
structure and quantitative composition, despite a large
number of developments and publications on this topic,
remain relevant. This is due to the lack of a sufficiently
general methodology for assessing the MPDS
effectiveness, which would allow expanding the space
of the analyzed parameters, would provide the
possibility of using non-Markovian laws of failure flow
distribution and recoveries and obtaining the final
quantitative results.

The article attempts to construct a general
mathematical model of RECS functioning, taking into
account the recovery system. Analysis of the
functioning of such a generalized system will allow to
obtain the laws of RECS recovery times distribution,
necessary for calculating the MPDS functioning
efficiency, taking into account reliability.

Main Results

Development of a mathematical model of non-
Markovian functioning systems taking into account the
recovery system. Consider an MPDS consisting of S of
one-type RECS, each of which is given its own set of
spare parts. All single sets of spare parts are closed to a
group set of SPTA-G. Let's assume that the average
failure rate of elements of the j-type of the RECS set
when operating under current as part of the equipment is

equal to ﬂ;@, and in storage mode — lgp. When
transferring elements from storage mode to operation
mode under current, their failure rate becomes equal to
/Lp). Then, when the RECS is operating in standby

mode, the failure rate of elements of the j-type of the
RECS aggregate can be written as follows [3]:

A0 220k + a0 (1-ky), (1)

where K, the intensity coefficient of equipment

operation. The cyclicity of RECS operation has a
significant impact on their reliability and to account for
this effect on the failure rate of RECS elements, the
ratio (1) can be written as follows [3, 5]:

A =40 (14 py7), )

where p; is a coefficient showing how many times the

failure rate of j-type elements increases with each turn
on of the RECS equipment, y is a coefficient
characterizing the average number of turns on of the
RECS equipment per hour. At this

A0 2 200k 42 (1- k). 3)

The models given below characterize an arbitrary
k-th interval of RECS operation, the index k will be
omitted in the future for convenience of recording.

Suppose that the RECS has in its composition a set
of elements that are homogeneous in characteristics.
Duration of their uptime is a continuous random

variable with a distribution density that fo(s(t).t) isa

function of the conditions and operating modes of the
system ¢£(t), as well as their lifetime t, and

fo(£(t).t) = A(2().t)P(e(t).1)=
= A(g(t),t)exp(—.[;/i(g(x),x)dx),

where A(£(t),t) is the failure rate of the elements as a

(4)

function of the conditions and modes of their operation
£(t) and the "age" .

Let's consider the process of elements operation of
the set of S RECS, taking into account the functioning
of the support system in time. At the moment of tlFA”'

failure of any of the RECS elements, it goes into a
recovery state.

The failed element is either rejected or sent to RB,
where it is restored, and a working element from the
spare parts kit is installed in its place. The recovery ends

at a random moment th, after which the RECS is

operational until the next failure.
The density of the RECS recovery duration

distribution is denoted by fg(t). During the RECS
operation, random periods of uptime 7} and recovery
time alternate 7.
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Such a process is called an alternating recovery
process [5, 7]. Introduce Gy (t) - time distribution

function of the k-th transition from the recovery state to
the working state. At this

Gy (t):jcb[(zk-l),r]fR (t)dt, (5)
0

where ®[(2k—1),7 |- there is a probability that the

system, starting from the recovery state at t=17; the

moment of time, has returned to the same state by the
moment of time, having made 2 k-1 transitions.
On the other hand, it is clear that

@[(Zk—l),rjz.t[Gk_l(r—u)fo(u)du. (6)

0

Substituting expression (6) into (5), we obtain the
distribution function Gy (t):

Gy (t)= j[ij_l(r—u) fr (u)du}fo (t-7)dz. (7)

oLO

Atthis  Gy(t)= [ fg(z)dx. ®)

It is shown [7] that if there R (t) is a time

distribution function of the k-th transition from the
working state to the recovery state in the alternating
process, then the failure flow parameter is obtained

from the ratio
d o0
a[kz a(t)} ©

Then, in the same alternating process, by analogy,
we calculate the parameter of the recovery flow wp (t)

by the formula

oR (t)=%[éek (t)}= ki;lgk (t)

Performing the forward and
transformation of the expression

t)= ZLGk (t)

after the transformations, we find the ratio for the
parameter of the recovery flow

on (1) = Tr (1) +

(10)

reverse Laplace

1)

t|z 12
+I[IwR(r—u)fo(u)du}fR(t—r)dr, (12
0Lo
or, equivalently
or (t)=fr(z)+
(13)

+I[I u)fo(t—z- u)dquR(r)dr.

This relation for the given ones fy(t) fg(t) is
the Volterra integral equation of the second kind with a
difference kernel relative to wp (t) .

The main indicators of RECS reliability will be
considered the system readiness coefficient (the
probability that at any given time t the RECS will be in
working condition - K, (t)) and the operational
readiness coefficient (the RECS will work flawlessly for
a given time interval (t, t+7), that is - P(t, t+17)), which
are respectively equal to:

Ki(t)=R+P,=p(t)+| p(t-7)wr (r)dr,

O —y

t
P(tt+7)=p(t+7)+[ g (u)
0

where p(t+7) is the probability that the RECS will not
fail once during the time interval (t+7),

[y@r (L)P(t+z-u)du is the probability that the

)p(t+7—u)du, (14)

RECS will fail for the last time at some point in time
u(u<t), will be restored by time t and will not fail again
until time t+7z.

Thus, in order to calculate the main indicators of
RECS reliability, it is necessary to know the law of
system operation duration distribution before failure (or

the corresponding density - fq (t)) and the parameter of

the recovery flow wg(t), found from the integral

equation (13) through the recovery time distribution
density fg(t).

On the other hand, to analyze the alternating
recovery process, it is necessary to know the density of
the uptime fy(t) and recovery time fg(t)

distribution, while equation (13) can be used with this
law of change wg(t)to find the recovery time

distribution density fg (t).

An exact analytical solution of the Volterra
equation of the second kind is possible only in some
special cases.

Consider the options for obtaining a numerical
solution of the Volterra equation.

Option 1. In this case, the traditional approach
[8] is used, which consists in decomposing the core of
the resolvent equation into a series. Let's evaluate its
versatility.

Let's rewrite the expression of the Volterra
equation (13) as follows

t

fr(t)=ar () +A[K(to)f (r)dz.  (19)
0
Here 1=-1, and
K(t0)= | g (0)fo(t—r—u)du.
0
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The kernel of the -equation (resolvent) is
represented as an expression
0
K(t,r)=Y Kpa(t.7),
n=0

where K, (t,7) -
recurrence relation

Ky (t,7)=K(t,7),

iterated kernels obeying the

Kn+1 (t, T) =

t
:IK(t,z’)Kn(t,T)dr, n=12,.... (16)
0

We will present the desired solution in the form of
infinite series

fr(t)=fo(t)+Af(t)+

, (17)
+A5fy () +. .+ A () +...
After the transformations, we get
fr(t)=r (t)+
(18)

o t
+Y 17IK7 (t,7) g (7)dz.
r=1 0

In order to evaluate the effectiveness of the
described method of restoring an unknown law of the
distribution of recovery time, a computational
experiment was conducted. During the experiment, the
reliability behavior of M homogeneous TEZ was
simulated (M=50 was assumed).

Random recovery time durations were formed in
accordance with the test distribution density fg(t).
Rayleigh's law was chosen as a test distribution law.
Random operating time to failure was assumed to be
exponentially distributed.

Data on failures and subsequent recoveries were
processed in order to calculate the law of change in the

parameter of the recovery flow @(t) .

The empirical function obtained in this case was
@g (t) further used to calculate the density of the
recovery time distribution.

However, the functions obtained in this case f (t)
are not distribution densities (they are not normalized
and have negative values in the distribution area).

Therefore, an attempt was made to modernize the
traditional methodology.

The resulting empirical function is @g (t) pre-
smoothed. To form a smoothed estimate of the
dsmtH (1) function, the é@(t) cubic polynomial
approximation using the least squares method was used.
But the dgyrh (t) functions obtained as a result of

substitution into equation (12) and its solution are
fsmth (t) also not normalized and are negative in the

distribution domain.

Thus, significant limitations of using the
traditional method of obtaining a numerical solution of
the Volterra equation of the second kind are revealed.

Option 2. Using parameterization technology. Due
to the fact that the traditional approach of obtaining a
solution to the Volterra equation of the second kind is
not universal enough, a different approach is proposed.
To find the density of the recovery time distribution, we
use parameterization technology. In this case, we will
look for the required density in some class of
distributions.

The requirements for the analytical description of
such a density consist in the possibility of changing its
statistical characteristics in a wide range by varying the
parameters.

In practice, [3, 5 7, 10] several different
approaches are used to obtain such descriptions, but the
necessary requirements are met by the distribution
density function, called the ¢ - distribution:

40 = A1+ 04 (x-01)/(263) ]

xexp[—(x—gl)z/(29§).(p+93.sgn(x—e1))}.

Here is:
A — normalizing coefficient,
01 — parameter that characterizes mathematical

expectation x,
0, — parameter that characterizes variance x,

03 — parameter that characterizes asymmetry x ,

64 — parameter that characterizes kurtosis x,

o — parameter that defines the possibilities of
¢ — distribution by asymmetry.

(19)

If 93:0, 494:0andp:1,

then ¢(x) is a normal distribution. It follows from
relation (19) that the values of the ¢ — distribution for

any values of the parameters included in it are non-
negative.

The multiplier A is found from the normalization
condition:

[~ p(odx=1 (20)
At this

[1+94-(x—91)2/(29§)}<
—(X—el)z/(29§)x dx=1 (21

x(p+63-59n(x—61))

N

—oo| XEXP

From here, after cumbersome

transformations, we get

simple but

-1

2 1 (“2( 9;1 )j+
A= 92\/;>< \/ (p+93) p+0O3

+ ! [l+ 04 J
J2(p-03)\  2(p-03)

L (22)
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For unimodality #(x), we require that it increases

on the interval [—oo;m], ie. dﬁ(x) >0, if xe[-o;m],
X
and decreases on the interval [m;+oo], i d9(x) <0, if
dx

X €[m;+o], where m =g is the mode of distribution
x. Then after analyzing the expression of the first

derivative we get
(1404 (=00%/(263) |- (o-lod) > 00 (23)

Condition (23) should be satisfied for all
X € (—o0;+00);and since 94> 0 u |93 < p, in particular,

(x-0)°
05

takes the smallest value equal to 1. Hence the
unimodality condition is follows:

and for x =g, which the multiplier {1+ Oa

04+|03 < p. (24)

We will investigate the possibility of using the
¢ —distribution to find the density of the recovery time
distribution satisfying equation (12). Let's consider an
optimization problem. For the given functions
wg (t)and fy(t), describing the law of change of the
recovery flow and the density of the distribution of the
operating time to failure, it is necessary to find such a
fixed set of parameters (6,,6,,65,0,) defining the ¢—
distribution so as to minimize

wg ()~ 9(61,65,05,6, ) -

t—r

=[] Tont

u) fo (t—r—u)du |x | dt. (25)

xp(61.0,.03,0,)d7

The objective functional (25) is the integral of the
discrepancy square between the observed law of change
of the recovery flow parameter and the one calculated in

accordance with (13) description of this law
corresponding to a fixed set of parameters
(61,60,,05,04).

The resulting optimization problem was solved by
the modified Nelder—-Meade method. The Nelder—-Mead
method is a development of the simplex method of
Spendl, Hext and Himsworth for finding the minimum
of functions of n variables. In this case, a set of

unknown parameters (6;,6,,63,6;) determines the

optimization procedure of the function n=4 variables.
The essence of the method consists in comparing the

values of the objective function J. (6,6,,65,6,) Atthe

(n+1) vertices of the simplex and moving the simplex in
the direction of the optimal point using an iterative
procedure.

The original simplex D, is introduced so that the
coordinates of the vertices are determined by the table
(one of the vertices is at the origin):

d d, .. d

dy d; .. d

0 dy dy .. dy

0, 9 93 .. 9
(n+1) dots

dy = \/_(\/n+ +n-1), dy, =

t is some selected number.

At each iteration for the current simplex, the
coordinates of the center of gravity of the figure resulting
from the removal of the vertex are found 4

1
9:_.222121_

n

I(W 1),

Ynil -
(26)

Further, as is known, the simplex moves towards
the optimum using three operations — reflection,
stretching and compression, providing at each kth
iteration J«(6y,6,,63,0,4) < J«1(61,65,65,6,)

The criterion for stopping a computational
procedure has the form:

ol 5ot

j=1

(@7)

n+1l
H1-8) [ 3 (8, -0T (8, -0), s <[01],
n+1
j=1

The stop criterion J is composite. At the same
time, its components have different weights depending
on the nature of behavior of the optimized function in
the vicinity of the extremum. If the optimized function
changes in the "deep depression" type in the region of
the extremum, then the first term makes a greater
contribution to the numerical value of the criterion K,
and the second one decreases rapidly. On the contrary,
if the optimized function changes in the "flat plateau"
type, then the first term quickly becomes small and
therefore the second term contributes more to the value
of the criterion K.

To prevent premature triggering of the stop
criterion near the optimum and neutralize the so-called

“ravine effect” for the function J k(6y,6,,65,6,) at the

kth iteration, an improvement technique was used, the
essence of which is as follows. After the stop criterion is
triggered, a new simplex is constructed above the center
of gravity of the compressed simplex, the dimensions of
which correspond to the original simplex. Let the
coordinates of the center of gravity of the compressed

sl
simplex form a vector $=| :
B0
&
Is the coordinates of a point A=| : | such that
éI’]
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the center of gravity of a simplex with an edge length
equal to t, using the vertex A as the starting point,

would coincide with X . The coordinate matrix of the
specified simplex has the form

él é1+dl é1+d2 él+d2
4 4,+d, &,+d 4, +d
D21=22221 27592 | (08
én én +d2 én +d2 én +d1
The coordinates of the center of gravity of this
simplex form a vector
1
4 +—(d{+(n-2d
| n+1(l (n-1)dy)
1
& +——(d;+(n-1)d
ci=|® (G (n-Dd2) | (29)

1
a, +——(d n-1)d
n+n+1(1+( )d2)

Now we will A find the coordinates of the point
from the equality C 3 =4, from where

1
&4 =%-——([W +(n=-Dd5) =% -5,
=% n+1(1 (n-Ddy)=%
’312=*2——1 (dp +(n=1)dy) =%, s,
n+1

(30)

Ao 1 o
a, =X, —m(d1+(n—l)d2) =%, -5,

d; +(n-1d,
n+l
Substituting the calculated values &,4d,,...,4, into

expression (28), we obtain the required simplex, using
which the minimum search procedure continues. This
procedure is considered complete if, after the next

where s =

(). o, (1), p(1)

14

compression, the algorithm leads to a point from which
the distance to the point of the previous compression

does (G 6ok B3k , 4k ) NOt exceed some sufficiently

small 5.
The results of solving the problem of finding a

set (6,,6,,03,0,) are shown in Fig. 1. The resulting
function ¢(t) s the desired distribution density, since it

the  normalization that s
tll)r?o R(t)= Iimjgﬁ(t)dt =1, as illustrated by the graph
in Fig. 2. Here0 is also a graph of the function for
comparison F, (t) =.t[ fomh (t)dt.

Thus, using the0¢—distribution allows to calculate

the recovery time distribution density based on data on
the law of change in the parameter of the failure flow.

After the density of the recovery time distribution
is formed according to the data on the law of change in
the parameter of the failure flow, the average recovery
times of the RECS operability are calculated.

So, let the average recovery time of RECS
working state in case of a failure of j-type element with

satisfies condition,

an unlimited supply of spare parts is Téé) . If there is no

j-type element in the spare parts (or it is not provided),
then RECS recovery is carried out at the expense of the
elements of the spare parts SPTA-G and the average
recovery time of the functional state will be

RO (OO 10N (31)

where P(gj) is the probability that there are no j-type

elements in the spare parts kit at any given time, Tap is

the average delivery time of the replacement element
from SPTA-G to the spare parts (the average RECS
recovery time due to the spare parts).

12 a(r)

10

0=

h
06
04 ﬂ

=
=
—

———

| et
=
——
-

—
]
N
——
—

mil

0z 4
N
@(1)

N\ @, (1)

0 2 4 6 g 10 12

14 16
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Fig. 1. Calculation ft) Using ¢ -Distributions
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Fig. 2. Checking the Normalization of the Distribution Law

The ratio (31) is obtained under the assumption
that the group set of SPTA-G is an inexhaustible source
of replenishment.

In the absence of a replacement element in SPTA-
G, the RECS restoration is carried out at the expense of
the element returned from the repair body. Then the
average recovery time of the RECS can be written as
follows

T =70 (1-rEV)+
_ . R (32)
TP (1— Pé’))+T,£’)P(§J)P(§’),

where P((;j) - the probability that at any given time

there are no j-type elements in the SPTA-G Kkit, TF(,j) -

the average repair time in the repair body of the j-type
element.

In conclusion, we note that the calculated
recovery time density is uniquely determined by the

nature of the data on the failure flow, however, the
specifics of the structure and parameters of the spare
parts system, heterogeneity, and multi-nomenclature of
the source data are not fully taken into account [18,
19], which does not allow to consider the described
methodology as a comprehensive method for analyzing
the effectiveness of RECS groupings with unreliable
elements in depending on the parameters and structure
of SCSSSEP.

Consideration of these circumstances determines
the direction of further research.

Conclusions

1. Mathematical model of the recovery process is
proposed. A universal four-parameter distribution is
used to describe random processes occurring in non-
Markovian systems.

2. The resulting model makes it possible to
determine the parameter of the recovery flow by solving
the Volterra integral equation with a difference kernel.
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MopeJib OLiHKM NMPOLECiB BiTHOBJIEHHS HEMAPKIBCbKUX CUCTEM
3 ypaxyBaHHSIM HeHailHOCTI eJieMeHTiB 3a 10BiIbHUX 3aKOHIB PO3NOLTY

JI. T'. Packin, 1O. B. IBanuuxin, JI. B. Cyxommus, f. B. Cesrkin, P. O. Kopcyn

AnoTtanis. Ilpenver gociaixKkeHHs1 — HAAIHHICTh HEMAPKIBCHKUX CHCTEM, IO BiJHOBJIIOIOTHCS, QYHKIIOHYBAHHS KX
OIHUCYEThCS IOBUTBHUMHU 3aKOHAMH po3mojiry. MeTor crarTi € po3poOka MateMaTH4HOI MOAElNi (yHKIIOHYBaHHS Cy4acHHX
KOMIT FOTepHHUX CHUCTEM 3a JOBUIBHMMH 3aKOHAMH PO3MOJIiTy TPUBAJIOCTI mepeOyBaHHS B KOXKHOMY i3 CTaHIB 3 ypaxXyBaHHSIM
BIJIHOBIICHHSI CHCTeMH Ta 3a0e3MeYeHOCTi 3amacHuMK eneMeHTaMid. OCHOBHHMM 3aBJAaHHSIM € po3po0Ka afeKBaTHOI MOAEi
npotiecy (GyHKIIOHYBaHHS CHCTEMHU 3 YpaXyBaHHSIM HEMapKOBCHKOrO XapakTepy MpOIECiB, 10 BiAOYBAIOThCS B CHUCTeMi, 1i
MOXITHBOI BEJIHMKOI PO3MIPHOCTI Ta HAsBHOCTI iepapxiuHoi cucTeMu BifHOBIEHHs. Ha OCHOBI Iii€i Mojem po3poOieHO MeTox
pO3paxyHKy  MIIJIBHOCTI ~ pPO3MOALTY  4Yacy  BiHOBIGHHsS CHCTeMH. BoJHO4Yac  3ampollOHOBAaHO  YHIiBepCalbHHI
YOTHPUIIAPAMETPUYHHUN PO3MOIN Ui OMKHCY BHUIAJKOBUX IPOIECIB, IO BiAOYBArOThCS B CHUCTEMi. BHUKOPHUCTOBYIOYH IO
amMpOKCHUMAIIiI0, PO3PaXyHOK IIYKAHOrO MapaMeTpy IOTOKY BiHOBICHHS BHKOHYETBCS IUIIXOM PO3B’SI3aHHS iHTErPABHOTO
piBHsiHHS BonbTeppa 3 pi3HHUIIEBUM SAPOM.

Kiaw4yoBi ciaoBa: BiJHOBICHHS HEMapKiBCKHX CHCTEM; MaTeMaTHYHA MOJIENb HAIHHOCTI; MILTbHICTh PO3IOIIIY Yacy
BI/IHOBJICHHS.
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