Advanced Information Systems. 2022. Vol. 6, No. 2

ISSN 2522-9052

UDC 004. 492.3+681.518

Methods of information systems protection

doi: https://doi.org/10.20998/2522-9052.2022.2.09

Vladyslav Pashynskykh, Yelyzaveta Meleshko, Mykola Yakymenko,
Dmytro Bashchenko, Roman Tkachuk

Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine

RESEARCH OF THE POSSIBILITIES OF THE C# PROGRAMMING LANGUAGE

FOR CREATING CYBERSECURITY ANALYSIS SOFTWARE IN COMPUTER
NETWORKS AND COMPUTER-INTEGRATED SYSTEMS

Abstract. The object of research in the article are the tools and capabilities of the C# programming language for the
implementation of cybersecurity analysis software in local computer networks and computer-integrated systems. The rele-
vance of the study is due to the importance of information security of computer and computer-integrated systems in govern-
ment, military-industrial complex, private business etc., and due to the importance of training cybersecurity professionals in
higher education to consider teaching examples in popular programming languages. The goal of the work is to research the
possibilities of the C# programming language for the development of software that analyzes cybersecurity in local computer
networks and computer-integrated systems. The tasks to be solved are: to develop software for scanning network device
ports in computer networks and computer-integrated systems for information security audit, using tools and libraries of the
C# programming language, to research the benefits and possibilities of using this programming language for this task. Re-
search methods: theory of computer networks, object-oriented programming, theory of algorithms and data structures, the-
ory of software testing. Conclusions. In this paper the possibilities and advantages of the C# programming language for
developing cybersecurity analysis software for computer and computer-integrated systems were explored. In the course of
work software that analyzes information security in local computer networks and computer-integrated systems was devel-
oped. This software can be used for educational purposes in learning the C# programming language and cybersecurity of
computer systems. The developed software has the potential to be further improved and applied in various fields to test the
cybersecurity of local computer networks and computer-integrated technologies.

Keywords: programming language; C#; cybersecurity; vulnerability analysis; port scanner; vulnerability scanner; com-

puter systems; computer-integrated systems; computer networks; information attacks; information security audit.

Introduction

Cybersecurity is important for any activity related
to the delimitation of access to information. Government
agencies and foreign ministries, the military-industrial
complex, private business, including Internet services —
this is a small part of the list of consumers interested in
keeping their information confidential from third parties.

Computer networks and computer-integrated tech-
nologies exist in almost all enterprises. There is a need to
analyze their security, because an attacker may appear on
the network, who will intercept important information
and have a harmful effect on the system, and without an-
alyzing the network, it will be very difficult to find his
presence.

The goal of this work is to research of the possibil-
ities of the C# programming language for the develop-
ment of software that analyzes information security in lo-
cal computer networks and computer-integrated systems.

The methods of computer network cybersecurity
analysis were studied and it was found that one of the
basic and mandatory methods of any security analysis is
the method based on scanning the ports of devices con-
nected to the local network. It is used both in computer
networks [1-3] and in computer-integrated systems, in
particular 10T systems [4-6] and smart home systems [7].

In this work, software was created to scan ports in
the C# programming language. This uses the Microsoft
Visual Studio development environment and Microsoft
.NET software technology. C# together with Microsoft

.NET software technology allows to most efficiently and
quickly develop software for Microsoft Windows operat-
ing systems.

The developed application allows to scan the net-
work, get MAC-addresses of devices, scan popular or
user-defined ports, store and analyze the received data.

Port scanning is a process that sends client requests
to a range of server ports on the host to find the active
port, can be used both to test system cybersecurity and to
find vulnerabilities with subsequent cyberattack [1]. Ad-
ministrators often use port scans to check the security
policies of their networks. Hackers also use it to identify
network services running on the host and search for vul-
nerabilities. There are two types of port scanning [1-3]:

Availability check. Before starting a comprehen-
sive scan, it will be useful to make sure that the working
device is located at the destination address. This task is
solved by sending ICMP echo messages using the ping
utility with a sequential search of all network IP-
addresses. Analyzing traffic and tracking Echo messages
sent over a short period of time to all hosts can detect scan
attempts.

SYN scan. The port scanner generates IP-packets
and monitors responses to them. This technique is called
scanning with semi-open connections, because a full
TCP/IP session is never fully opened. The port scanner
generates a SYN packet. If the port on the destination
host is open, the SYN-ACK packet will come from it. In
response, the scanner sends an RST packet, which closes
the connection before the session is complete.

48 © Pashynskykh V., Meleshko Ye., Yakymenko M., Bashchenko D., Tkachuk R., 2022

ISSN 2522-9052

CyuacHi inopmartiitai cuctemu. 2022. T. 6, Ne 2

Port scanners are one of the components of vulnera-
bility scanners [2] — software or hardware for diagnosing
and monitoring network computers, which allows to scan
networks, computers and programs to identify possible se-
curity problems, assess and eliminate vulnerabilities.

The .NET platform and the C# programming lan-
guage provide all the necessary capabilities to create ap-
plications that can interact over a network and use differ-
ent network protocols [8].

In particular, in the .NET class system, the IP-
address is represented by the IPAddress class. Parse()
method of this class converts the string representation of
the address to IPAddress.

The IPHostEntry class is used to obtain an address
on the network. It contains information about a specific
host computer. The HostName property returns this host-
name, and the AddressList property returns all host IP-
addresses, as one computer can have multiple IP-
addresses on the network. The Dns class is used to inter-
act with the DNS server and obtain the IP-address. To

obtain information about the host computer and its ad-
dress, it has a method GetHostEntry().

Thus, the C# language contains ready-made tools for
working with network devices, which greatly facilitates
the creation of software for information security audit of
computer networks and computer-integrated systems.

Main material

In this work researching the possibilities of the C#
programming language for the development of software
that analyzes information security in computer and com-
puter-integrated systems. The purpose of the developing
software is checking the server or host for availability on
the network, checking its MAC-address and checking
open and standard socket ports (port scanning).

The software for cybersecurity analysis of local net-
works consists of three blocks (Fig. 1), namely: the block
of analysis of the local network, the block of analysis of
ports of network devices and the block of work with da-
tabases and graphical interface.

Software for cybersecurity analysis of
computer and computer-integrated systems

— s

%

LAN analysis unit

Network device port analysis
unit

-

Block of work with databases
and graphical interface

Scan function

Scan function

Data storage to database
function

Checking if a device is on
a network

Scanning a range of ports

Database opening function

Get the physical address
of a device

Scanning popular ports

Message deletion function

Data analysis function

Analysis of scan results

Function for deleting scan

results

Scan result output function

- |P address;
- status;
- MAC address.

Search function

Scan result output function

| Search function |

Fig. 1. Structural scheme of the developed software

SQLite is used to work with databases. The peculi-
arity of SQLite is that it does not use the client-server
paradigm, i.e. the SQL.ite engine is not a separate process
with which the application interacts, but provides a li-
brary with which the program is compiled and the engine
becomes part of the program. Thus, SQLite library func-
tion calls (APIs) are used as an exchange protocol. This
approach reduces overhead, response time and simplifies
the program. SQL.ite stores the entire database (including
definitions, tables, indexes, and data) in a single standard
file on the computer on which the application is running.
Ease of implementation is achieved due to the fact that

before the transaction, the entire file that stores the data-
base is blocked; ACID functions are achieved in particu-
lar by creating a log file. Multiple processes or threads
can read data from one database at the same time without
any problems. An entry in the database can be made only
if no other requests are currently being serviced; other-
wise the write attempt fails and the error code is returned
to the program. Due to the architecture of the SQlite en-
gine, it can be used both on embedded systems and on
dedicated machines with gigabyte data sets. A NetDevice
class is used to represent the device on the network. Con-
sider him implementation (Fig. 2):

49

Advanced Information Systems. 2022. Vol. 6, No. 2 ISSN 2522-9052

// List of devices
List <NetDevice> devList = new List <NetDevice> ();

public class NetDevice {

private string ip;
private string status;

private string mac;

// Initialization of properties by the constructor

public NetDevice (string [] row) {
ip = row [0];

status = row [1];

mac = row [2];

}

// Obtaining properties

public string [] GetInfo () {

return new string [] {ip, status, mac};
}

}

Fig. 2. Suggested source code of implementing a NetDevice class
for representing a device of computer network

Each class object is a device on the network. It has method that allows to get its properties. All objects are
three properties, namely: network address (ip), status, stored in the devList. A Port class is used to represent the

and physical address (mac). Also, each object has a port. Consider its implementation (Fig. 3):

// List of ports
List <Port> portList = new List <Port> ();

public class Port {

private string port;
private string status;
private string description;

// Dictionary with the description of popular ports

Dictionary <int, string> commonports = new Dictionary <int, string> ({
[20] = "File Transfer Protocol (FTP) Data Transfer",

[21] = "File Transfer Protocol (FTP) Command Control",

[22] = "Secure Shell (SSH) Secure Login",

[23] = "Telnet remote login service, unencrypted text messages",

[25] = "Simple Mail Transfer Protocol (SMTP) E-mail routing",

[53] = "Domain Name System (DNS) service",

[80] = "Hypertext Transfer Protocol (HTTP) used in the World Wide Web",
[110] = "Post Office Protocol (POP3)",

[119] = "Network News Transfer Protocol (NNTP)",

[123] = "Network Time Protocol (NTP)",

[143] = "Internet Message Access Protocol (IMAP) Management of digital mail",
[161] = "Simple Network Management Protocol (SNMP)",

[194] = "Internet Relay Chat (IRC)",

[443] = "HTTP Secure (HTTPS) HTTP over TLS / SSL"

}

// Initialization of properties by the designer

public Port (string [] row) {

port = row [O0];

status = row [1];

if (commonports.ContainsKey (Convert.ToInt32 (row [0]))))
description = commonports [Convert.ToInt32 (row [0])];

}

else {

description = "None";

}
}

// Obtaining properties

public string [] GetInfo () {

return new string [] {port, status, description};
}

}

Fig. 3. Suggested source code of implementing a Port class
to represent the port of a network device

Each this class object is a port. It has three proper- port description is added when the object is initialized au-
ties, namely: port number, status, and description. The tomatically. A description of the most popular ports is

50

ISSN 2522-9052

CyuacHi inopmartiitai cuctemu. 2022. T. 6, Ne 2

stored in the Commonports dictionary. Also, each object
has a method that allows to get its properties. All objects
are stored in the sorted portList.

As mentioned above, SQL.ite is used to work with
databases. Consider the function where data is saved to
the database (Fig. 4).

// Save the device list to the *
private void saveAsToolStripMenultem Click

var time = DateTime.Now;
string formattedTime = time.ToString

// Create a save file dialog

SaveFileDialog saveFile = new SaveFileDialog
saveFile.Title = "Save database as ...";
saveFile.FileName =
saveFile.Filter = "SQLite DB files (*
//savefile.InitialDirectory = @ "C: \";
if (saveFile.ShowDialog ()
try {

// Create a database file
SQLiteConnection.CreateFile

// Create a connection
SQLiteConnection m_dbConnection;

// Connect to the database

m_dbConnection.Open ();

// Create a table

string sqgl;

sgl = "create table iplist
SQLiteCommand command;
command = new SQLiteCommand
command.ExecuteNonQuery () ;

(ip varchar (20),

// Write device list data to the database
foreach (var item in devList) {

command = new SQLiteCommand
command.CommandText = "insert into iplist
command.CommandType = CommandType.Text;
command.Parameters.Add (new SQLiteParameter
command.Parameters.Add (new SQLiteParameter
command.Parameters.Add (new SQLiteParameter
command.ExecuteNonQuery () ;

}

// Close the database connection
m_dbConnection.Close ();

// Send a message to the user
writeMessage
}

catch (Exception ex) {
MessageBox.Show (Error:
}

}

}

.sqlite database file
(object sender,
// Generate a database file name using the current date and time

("ddMMyyyy hhmmss") ;

(O

"ScanResult " + formattedTime + ".sqglite";
.sqglite)

// Uncomment to use another default save dir,
== DialogResult.OK)

(saveFile.FileName) ;

m_dbConnection = new SQLiteConnection ("Data Source =" + saveFile.FileName + ";

(sgl, m dbConnection);

(m_dbConnection) ;
(ip,

status varchar (5), mac varchar (30))";
status, mac) values (Q@ip, @status, @mac)";

("@ ip", item.GetInfo (([0])));

("@ status"™, item.GetInfo (([11))):

("Q@ mac", item.GetInfo (([21)));

("\ r \ nDatabase successfully saved.");

Could not write file to disk. Original error:

EventArgs e) {

| * .sglite | All files (*. *)

| * * M.
. ’

ie C: \
{

Version = 3;");

"+ ex.Message," Error ");

Fig. 4. Suggested source code of implementing the function
of saving scan results to a SQL.ite database

The table of the created database contains three col-
umns, namely: “ip”, “status” and “mac”.

Consider the scanning function of the local net-
work, which uses multithreading to increase the scanning
speed (Fig. 5).

Multithreading is a property of an operating system
or application that means that the process generated in the
operating system can consist of several threads running
in parallel or even simultaneously on multiprocessor sys-
tems. For some tasks, this separation can lead to more
efficient use of computer resources. Such execution
threads are also called streams.

The essence of multithreading is quasi-multitasking
at the level of one executable process, i.e. all threads are
executed in the address space of the process. In addition,
all process threads have not only a common address
space, but also common file descriptors. The process be-
ing performed has at least one (main) thread.

To implement multithreading, we use the Paral-
lel.For loop built into Microsoft .NET software technol-
ogy, which automatically creates the maximum number
of threads to speed up certain actions.

The iphlpapi.dll library is used to obtain the device's
MAC-address (Fig. 6).

51

Advanced Information Systems. 2022. Vol. 6, No. 2

ISSN 2522-9052

// Scan IP addresses async
private void scanIP () {
string ipone firstAddrOctetOneTextBox.Text

string iptwo secondAddrOctetOneTextBox.Text

if (isValidIP (ipone) ==
Invoke (new Action ()
// Notify user,
writeMessage ("\ r \ nScanning LAN ..
1)

&& 1sValidIP
:>{

(iptwo)

"y

int start BitConverter.ToInt32
Convert.ToByte
Convert.ToByte
Convert.ToByte
Convert.ToByte
b 0)s

[new bytel]]

(firstAddrOctetTwoTextBox.Text)
(firstAddrOctetOneTextBox.Text)

int end BitConverter.ToInt32
Convert.ToByte
Convert.ToByte
Convert.ToByte
Convert.ToByte

}o 0)

[new byte]]

// Create and fill list of IP addresses
List <IPAddress> addresses
for (int i start; i <= end; 1 ++) {
byte [] bytes BitConverter.GetBytes
addresses.Add (new IPAddress (new

}

= (1)
[[{bytes

[3]

// Multithreading LAN scan

Parallel.For (0, addresses.Count,

System.Net.NetworkInformation.Ping p

System.Net.NetworkInformation.PingReply rep

if (rep.Status

NetDevice device new NetDevice
(addresses [1 [.ToString ())}));

devList.Add (device);

}

else {

if (showAllChkBox.Checked == true)

// Creating new device

NetDevice device new NetDevice

(new string

{

(new string []

// Adding new device to list
devList.Add (device);
}

}) i

Invoke (new Action
// Fill listView
fillListView ();

0

:>{

// Notify user,
writeMessage
P

}

else {
MessageBox.Show
}

}

that scanning process is done
("Done.");

("Error: Invaild IP address.",

firstAddrOctetThreeTextBox.Text + "." + firstAddrOctetFourTextBox.Text;

secondAddrOctetThreeTextBox.Text + "." + secondAddrOctetFourTextBox.Text;

that scanning process is starting

(firstAddrOctetFourTextBox.Text),
(firstAddrOctetThreeTextBox.Text),

(secondAddrOctetFourTextBox.Text),
(secondAddrOctetThreeTextBox.Text),
(secondAddrOctetTwoTextBox.Text),
(secondAddrOctetOneTextBox.Text)

new List <IPAddress>

new ParallelOptions
new System.Net.NetworkInformation.Ping

System.Net.NetworkInformation.IPStatus.Success)
[[{addresses

+ "." + firstAddrOctetTwoTextBox.Text + "."

+
+ "." 4+ secondAddrOctetTwoTextBox.Text + "." +

true)

{

’

()7

bytes [2], bytes [1], bytes [0]}));

’

(), (i, state) => {

()
(),

p.Send (addresses [i]
{
.ToString

.ToString 100);

[i] (), "online", getMAC

{addresses [i] .ToString (), "offline", "none"});

"Error");

Fig. 5. Suggested source code of the implementation of the LAN scanning function,
which uses multithreading to increase the scanning speed

This function by sending an ARP request to the ap-
propriate IP-address allows to get its physical address —
MAC-address. MAC Address is a communication proto-
col designed to convert IP-addresses to MAC-addresses
on TCP/IP networks.

Developed application allows to scan the network,
obtain MAC-addresses of devices, scan popular or user-
defined ports, store and analyze the received data.

Consider in more detail the interface of the devel-
oped application. The interface consists of two tabs —
“LAN Scan” and “Port Scan”, a text box in which user
messages, analysis results and user menus are displayed.

The tab “LAN Scan” (Fig. 7) consists of the table,
eight input fields for four octets of the initial and final IP-
address, respectively, input fields for search, one option
(checkbox) and three buttons.

52

ISSN 2522-9052

CyuacHi inopmartiitai cuctemu. 2022. T. 6, Ne 2

// Used this library to get the MAC address
[DllImport ("iphlpapi.dll",

// Sent ARP to obtain MAC address by IP-address

private string getMAC (string ip) {

IPAddress dst = IPAddress.Parse (ip);
byte [] macAddr = new byte [6];
uint macAddrLen = (uint) macAddr.Length;

if (SendARP (BitConverter.ToInt32
throw new InvalidOperationException

}

string [] str = new string [(int) macAddrLen];
for (int i = 0; 1 <macAddrLen; i ++) {
str [i] = macAddr [i] .ToString ("x2");

}

return string.Join

}

(":", p.)i

ExactSpelling = true)]
public static extern int SendARP (int destIp, int srcIP, byte [] macAddr, ref uint physicalAddrlen) ;

// IP-address to scan

(dst.GetAddressBytes (), 0), 0, macAddr, ref macAddrLen)! = 0) {
("SendARP failed.");

Fig. 6. Suggested source code of implementing the function of obtaining the MAC-address
of devices using the library iphlpapi.dil

Output
Nettverismester 1.0.0.0

Search P Initializing application... Done.

Scanning LAN... Done.

" Databasze V:\DIPLOMA \Nettverksmester
\Mettverksmesteribin'x&4'Debug
‘subnet_testdb sqlte successfully loaded.
Cld database for analysis successfully
loaded.

Analisis result: found mismatches (1):
192.168.0.101;

Recommendation: check your network.
PC ot it's network card wasnt changed, it
may be spoofed or modified by intruder.
Scanning commeon ports... Done.

Port scan result: found default ports (3): 135;
139; 445;

Recommendation: change default ports, if it
used by important services, or close it to
improve security.

>

Mettverksmester
File Edit Help
| Port Scan
[] Show Non-Responded IP's
P Status MAC-address
1592.168.0.0 - none
1592.168.01 online 28:33:82:3311.dd
152.168.0.2 - none
152.168.0.2 - none
152.168.0.4 - none
152.168.0.5 - none
152.168.0.6 - none
192.168.0.7 - none
192.168.0.8 - none
192.168.0.9 - none
192.168.0.10 - none
192.168.0.11 - none
192.168.012 - none
152.168.0.13 - none
152.168.0.14 - none
152.168.0.15 - none
152.168.0.16 - none
152.168.0.17 - none
£
Fom: [192]. 18] [0][] 7o [122]. [ee]. [0,

Scan Analyze

Fig. 7. Application interface. The tab “LAN Scan”

The button “Scan” scans the network and displays
the result in the table (Fig. 7).

The result of the scan is a list of IP-addresses with
their status (whether the device is located at the address),
and MAC device addresses, if available on the network.

The button “Analyze” analyzes the network and re-
ports whether a device has been modified or replaced by
an attacker.

The button “Search IP” allows to search for the de-
vice by its address.

It will be displayed in the table (Fig. 8). Option
“Show Non-Responded IP’s” allows to hide or show IP-

addresses that do not belong to any device.

The tab “Scan Port” (Fig. 9) consists of the table,
two input fields of the port range for custom scan mode,
four input fields for four octets IP-addresses of the device
whose ports to be scanned, search input fields, drop-
down menu and two buttons.

The drop-down menu (Fig. 10) allows the user to
select the scan mode: scan popular ports, or scan a range
of ports (all default ports).

The range of ports to be scanned can be set by the
user. The button “Scan” scans the ports and displays the
result in the table (Fig. 9).

53

Advanced Information Systems. 2022. Vol. 6, No. 2

ISSN 2522-9052

Mettverksmester

File Edit Help

LAN Scan Port Scan

— O >

Output
MNettverismester 1.0.0.0

] Show Non-Responded IP's 152.168.0.101

| I Search IP I Initializing application... Done.

Scanning LAM... Done.

MAC-address
14:dd:44.56:88:22

P Status

152.168.0.101 online

Database VADIPLOMANettverksmester
‘Mettverksmestertbin'wb4'\Debug
‘subnet_testdb sqglite successfully loaded.
Cld database for analysis successfully
loaded.

Analisis result: found mismatches (1):
192.168.0.101;

Recommendation: check your network.
PC ot it's network card wasnt changed. it
may be spoofed or modified by intruder.
Scanning common ports... Done.

Port scan result: found default ports (3): 135;
135; 445;

Recommendation: change default ports, if it
used by important services. or close it to
improve security.

Search resutt: device with IP 192.168.0.101
found!

Fig. 8. The tab “LAN Scan”. Search for a device on the network and messages

Mettverksmester

File Edit Help

LAN Scan Port Scan

Output
Mettverksmester 1.0.0.0

Port Range: |0 - (1023 Search Port Initializing application... Done.
Scanning LAN... Done.
- S Database V:\DIPLOMA!Nettverksmester

Port Status Description “Mettverksmestertbin'x64'Debug

closed Mone “subnet_testdb sqlite successfully loaded.
7 closed MNone g!gdgatabase for analysis successfully
20 closed File Transfer Protocol (FTF) Data Transfer Analisis result: found mismatches 1)
21 closed File Transfer Protocol {FTP) Command Control 192.168.0.107;
72 Josed 5 Shell (SSH) S Log Recommendation: check your network. ff
23 closed Telcure = {I)) ec!Jre — q PC ot it's network card wasnt changed, it

close elnet remote login service, unencrypted text messages may be spoofed or modfied by intruder.
25 closed Simple Mail Transfer Protocol (SMTPF) E-mail routing Scanning common ports... Done.
42 closed None Port scan result: found default ports (3): 135;
43 closed MNane 139: 445:

- - Recommendation: change default ports, if it

53 closed Domain Mame System (DNS) service used by important services, or close it to
2] closed Mone improve securty.
73 closed Mone
80 closed Hypertext Transfer Protocol (HTTP) used in the Wordd Wide Web
a3 closed Mone
106 closed None
110 closed Post Office Protocal (POP3)
m closed MNone
113 closed Mone W
£ >

P At 192 [18]. 0]

Scan Type: | Most Common Ports ~

Fig. 9. Application interface. The tab “Port Scan”

Scan Type:

Fig. 10. The tab “Port Scan”. Drop-down menu

The result of the scan is a list of ports with their
status (open or closed), and a description of the port, if
it is popular and used by a particular service.

The button “Search Port” allows to search for a port
by its number. It will be displayed in the table (Fig. 11).

Thus by means of the C# programming language
managed to create port scanner for cybersecurity audit of
computer and computer-integrated systems.

Conclusions

In this paper, the possibilities and advantages of the
C# programming language for the development of cyber-
security analysis software in computer and computer-in-
tegrated systems were researched.

In the course of work the software which analyzes
is developed information security in local computer net-
works and computer-integrated systems. This software
can be used for educational purposes in learning the C#
programming language and cybersecurity of computer
systems.

The developed software has the potential to be fur-
ther improved and applied in various fields to test the cy-
bersecurity of local computer networks and computer-in-
tegrated technologies.

54

ISSN 2522-9052 CyuacHi inopmartiitai cuctemu. 2022. T. 6, Ne 2

Mettverksmester - m} b4

File Edit Help

LAN Scan Port Scan Cutput
Nettverksmester 1.0.0.0
Port Rangs: 0 - [1023 443 | [Search Port | |Inttalizing application... Dane.

Scanning LAN... Dane.

. Database VADIPLOMA\Nettversmester
Port Status Description \Mettverksmester\bin'x64\Debug

443 closed HTTFP Secure (HTTPS) HTTP over TLS/S5L ‘subnet_testdb sqlite successfully loaded.
(Cld database for analysis successfully
loaded.

Analisis result: found mismatches (1):
152.168.0.107;

Recommendation: check your networl. If
PC ot it's network card wasnt changed. it
may be spoofed or modified by intruder.
Scanning common ports... Done.

Port scan result: found default ports (3): 135;
139; 445;

Recommendation: change default ports, f it
used by important services, or close it to
improve security.

Search result: device with 1P 152.168.0.101
found!

Search result: port 443 found!

IP Address: . . EI . Scan Type: | Most Common Ports ~ Scan

Fig. 11. The tab “Port Scan”. P33ort search and location notification

REFERENCES

1. Shirey R. (2000), “RFC 2828 Internet Security Glossary”, Internet Engineering Task Force, available at: https:/data-
tracker.ietf.org/doc/html/rfc2828.

2. Poddubnyi V., Sievierinov O., Pustomelnik O. (2020), “Vulnerability management as an integral part of its security policy”,
Control, Navigation and Communication Systems. Academic Journal, Vol. 4 (62), Poltava, pp. 55-58, DOI:
https://doi.org/10.26906/SUNZ.2020.4.055 (in Ukrainian)

3. Mohammed M. O. (2020), “Automatic Port Scanner”, Int.ernational Journal of Innovative Science and Research Technology,
Vol. 5(9), pp. 711-717, DOI: https://doi.org/10.38124/IJISRT20SEP503.

4. Verma S., Kawamoto Y., Kato N. (2021) “A Smart Internet-wide Port Scan Approach for Improving IoT Security under
Dynamic WLAN Environments”, in IEEE Internet of Things Journal, DOI: https://doi.org/10.1109/JI0T.2021.3132389.

5. Verma S., Kawamoto Y., Kato N. (2021) “A Network-Aware Internet-Wide Scan for Security Maximization of IPv6-Enabled
WLAN IoT Devices”, inlEEE Internet of Things Journal, Vol. §, No. 10, pp. 8411-8422, DOI:
https://doi.org/10.1109/J10T.2020.3045733.

6. Markowsky L., Markowsky G. (2015) “Scanning for vulnerable devices in the Internet of Things”, 2015 IEEE 8th International
Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS),
pp. 463-467, DOI: https://doi.org/10.1109/IDAACS.2015.7340779.

7. Bastos D., Shackleton M., El-Moussa F. (2018), “Internet of Things: A Survey of Technologies and Security Risks in Smart
Home and City Environments”, Living in the Internet of Things: Cybersecurity of the IoT — 2018, DOI:
https://doi.org/10.1049/cp.2018.0030.

8. Microsoft (2022), “C# documentation”, Official website Microsoft Corporation, available at: https://docs.microsoft.com/en-

us/dotnet/csharp.

Received (Hapniiinua) 21.03.2022
Accepted for publication (ITpuitasaTa 10 apyky) 25.05.2022

BIJIOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

MammHcbknx Baagucnap BaxmmoBud — MaricTp 3 KOMIT I0TepHOT iHXKeHepii, kadeapa kibepOe3neku Ta mporpaMHOro 3adesme-
4yeHHs, [{eHTpanpHOyKpalHChKHUI HalliOHAIBHUI TeXHIYHUI yHiBepcuTeT, KponuBHuIbKHl, YKpaiHa;
Vladyslav Pashynskykh — Master of Science in Computer Engineering, Cybersecurity and Software Department, Central
Ukrainian National Technical University, Kropyvnytskyi, Ukraine;
e-mail: vlad.pashynskykh@gmail.com; ORCID ID: https://orcid.org/0000-0002-7298-7946.

Menemko €i1m3aBera BiraguciaBiBHa — TOKTOp TEXHIYHUX HayK, npodecop, ToueHT kadeapu KibepOes3neku Ta IporpaMHoro
3abe3nedeHHs, LleHTpanpHOyKpaiHChKII HalliOHAIBHUH TeXHIYHUN YHiBepcHuTeT, KponuBHUIBKHH, YKpaiHa;
Yelyzaveta Meleshko — Doctor of Engineering Sciences, Professor, Associate Professor of Cybersecurity and Software De-
partment, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine;
e-mail: elismeleshko@gmail.com; ORCID ID: https://orcid.org/0000-0001-8791-0063.

Sxumenko Muxoua CeprilioBuy — kauauaat Gisnko-MaTeMaTHYHHUX HAayK, JOLEHT, 3aBiayBad Kadeapu BUIIOT MAaTEeMAaTHKH Ta
¢izuku, LleHTpanbHOYKpaiHCHKHIA HalliOHATBHUH TEXHIYHUI yHiBepcuTeT, KponuBHUIBKHN, YKpaiHa;

55

Advanced Information Systems. 2022. Vol. 6, No. 2 ISSN 2522-9052

Mykola Yakymenko — Candidate of Physical and Mathematical Sciences, Associate Professor, Head of Higher Mathematics
and Physics Department, Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine;
e-mail: m.yakymenko@gmail.com; ORCID ID: https://orcid.org/0000-0003-3290-6088.

Bamenko Imutpo B’siueciaBoBud — acnipanT xadeapu kibepOesnekn Ta mporpamHoro 3abesnedenus, LlenTpansHOykpaiH-
CHKHI HalllOHAIBHUIT TEXHIYHUH yHiBepcuTeT, KponuBHuIbKHH, YKpaiHa;
Dmytro Bashchenko — Postgraduate student of Cybersecurity and Software Department, Central Ukrainian National Technical
University, Kropyvnytskyi, Ukraine;
e-mail: pashchenko.dv@meta.ua; ORCID ID: https://orcid.org/0000-0003-4561-0016.

Trauyk Poman OuieroBuu — acmipant kadeapu kibepdesnekn Ta mporpaMHoro 3abesnedeHHs1, L{eHTpanbHOyKpalHCHKHUH HaIlio-
HaJIbHUH TeXHIYHUH yHiBepcuTeT, KponuBHHIbKHH, YKpaiHa;
Roman Tkachuk — Postgraduate student of Cybersecurity and Software Department, Central Ukrainian National Technical
University, Kropyvnytskyi, Ukraine;
e-mail: tkachuk@outlook.com; ORCID ID: https://orcid.org/0000-0002-1984-0419.

JocJikeHHsI MOKJIMBOCTeif MOBH nporpamyBaHHsi C# JI1sl CTBOPEHHSI IPOrPaMHOIo 3ade3neYeHHst
aHaJi3y kidepOe3neKu B KOMII'IOTEPHUX Mepeskax Ta KOMII’IOTePHO-iHTerPOBAHUX CHCTEMAaX

B. B. Ilamnucekux, €. B. Menemko, M. C. fxumenko, 1. B. bamenko, P. O. Tkauyk

AnoTtanis. O0’€KTOM BUBYCHHS y CTATTI € 3aCO0H Ta MOKIIMBOCTI MOBH IporpaMyBaHHs C# 1s pearizatiii mporpaMHOTO
3a0e3neueHHs aHalizy KibepOe3neKkH y JJOKAIBPHUX KOMIT IOTepHHX Meperkax Ta KOMIT IOTepHO-IHTEerpOBaHHUX CHCTeMax. AKTyalb-
HICTB JIOCIII/KEHHS 3yMOBJICHA BayKJIMBICTIO 3a0e31edeH s iH(GopMaiiHol Ge3rmeKy KOMIT' IOTEPHUX Ta KOMIT IOTepHO-1HTerpoBa-
HHUX CHCTEM y Jiep)KaBHUX OpraHax, BiiCHKOBO-IIPOMUCIOBOMY KOMIUIEKCI, TPUBAaTHOMY Oi3HECi TOIO, Ta BaXKJIUBICTIO MiJ 4ac
miArotoBku (axismiB 3 KibepOe3neKy y BUIIUX HaBYAIBHHUX 3aKJIaJaX PO3MIsAAy HaBYATbHHUX HPHKIAIIB Ha MOMYIIPHUX MOBaxX
nporpaMmyBaHHs. MeTo0 poOOTH € JOCIIIKEHHS MOKIMBOCTEH MOBHU IporpamyBaHHs C# ais po3poOKH IporpaMHOTo 3abe3rme-
YeHHSI, SKe aHaJli3ye Oe3NeKy Y JIOKAJbHUX KOMIT IOTEPHUX MEpeXkax Ta KOMIT IOTEPHO-IHTETPOBAHUX CHUCTEMax. 3aBAaHHSA: PO3-
pOOHTH MporpamMHe 3a0e3NeUeHHs ISl CKaHyBaHHs MOPTiB MEPEKEBHX MPHCTPOIB y KOMIT' IOTEPHUX MEpEeKax Ta KOMII FOTEpHO-
IHTETPOBAHUX CHCTEMaX JJIs ayIuTy iH(OpMaLiitHOT Oe3MeKH, BAKOPUCTOBYIOUH 3ac00H Ta 06i101i0TeKr MOBH IiporpamyBaHHsS C#,
JOCIIIINTH TIepeBard Ta MOXKIMBOCTI BUKOPHUCTaHHS caMe Li€l MOBH IIporpaMyBaHHS JUI AaHOI 3amadi. MeToau J0CTiIKeHb:
Teopist KOMI IOTEPHUX MepeX, 00 €KTHO-OpiEHTOBAaHE IIPOTPaMyBaHHsI, TEOPisl aITOPUTMIB Ta CTPYKTYP JaHUX, TEOPis TECTYBaHHS
nporpaMHoro 3abesnedeHHs. BucHoBKkH. Y 1iii poOoTi OyII0 TOCHIIKEHO MOXKIIMBOCTI Ta IIepeBark MOBH nporpamyBanHs C# s
PO3POOKH MPOTPaMHOro 3a0e3MeUeHHs 3 aHami3y KibepOe3nekn KOMIT IOTCPHHUX Ta KOMIT FOTEPHO-IHTETPOBAHUX CUCTEM. Y XO7i
poboTu po3pobieHo mporpamMHe 3a0e3MedeHH s, siKe aHalizye iHpopMalliiiHy Oe3meKy y JOKaJbHUX KOMIT IOTEPHHUX Mepexax Ta
KOMIT FOTEPHO-IHTErPOBaHUX cucTeMax. JaHe mporpamHe 3a0e3Ne4eHHs] MOXKHA BUKOPHCTOBYBATH Y HABYAIBHUX LUIAX TPU BH-
BUYCHHI MOBH mporpamyBaHHs C# Ta kibepOe3lekun KOMI IOTEpHUX CHCTeM. Po3pobieHe mporpamMHe 3a0e3NedeHHS Ma€ MOTCH-
LiiTHY MOXKJIMBICTB JJISI TIOJABIIOTO BIOCKOHAJICHHS 1 3aCTOCYBaHHS Y PI3HHUX Tally3sX JJIS IEePeBipKH KibepOe3neKn TOKaTbHUX
KOMIT'IOTEPHUX MEPEX Ta KOMIT I0TEPHO-IHTETPOBAaHUX TEXHOJIOTIH.

KawuoBi caoBa: moBa nporpamysanns; C#; kibepOesneka; aHaii3 Bpa3iuBOCTEil; CKaHep MOPTiB; CKaHEP BPa3IUBOC-
Teil; KOMIT'IOTePHI CHCTEMH, KOMII I0TEepHO-IHTETpOBaHi CHCTEMH; KOMII IOTepHI Mepexi; iHpopmaniiiHi aTaku; ayauT iHpopma-
LiiTHO1 Oe3MeKH.

HcciienoBanue BO3MOKHOCTE A3bIKA InporpaMmmMHupoOBaHuA C# naist co3nanus nporpaMmmHoOro obecrieyeHust
aHa/IM3a Knﬁepﬁesonacnocnd B KOMIIBIOTEPHBLIX CETAX U KOMIIBIOTEPHO-UHTEIrPUPOBAHHBIX CHCTEMAX

B. B. Ilamunckux, E. B. Menemnixo, H. C. Slkumenko, /1. B. bamenko, P. O. Tkauyk

AHHOTanusa. O0BbeKTOM H3y4eHHUs CTaThH SABISIOTCS CPEACTBA U BO3MOXKHOCTH S3bIKa IIporpammupoBanus C# s pe-
JIM3alUK IPOrPaMMHOT0 00ecIiedeH s aHaIN3a KHOepOe30IIaCHOCTH B JIOKAJIbHBIX KOMITBIOTEPHBIX CETSIX U KOMIBIOTEPHO-UHTE-
T'PUPOBAHHBIX CUCTEMaX. AKTYaJIBHOCTh HCCIEA0BAHNUS 00YCIIOBIIEHA BAXKHOCTHIO 00eCcTIeueH s HHPOPMAIHOHHON Oe3011acHo-
CTU KOMIIBIOTEPHBIX U KOMITBIOTEPHO-UHTEIPUPOBAHHBIX CUCTEM B I'OCYHAAPCTBEHHBIX OpraHax, BOCHHO-IIPOMBINIJIEHHOM KOM-
IUIeKCe, YaCTHOM OW3HECe U T.[., U BAKHOCTBIO P MOATOTOBKE CIICIUAIMCTOB MO KMOEpOE30MacHOCTH B BBICIIMX YISOHBIX 3aBe-
JCHHUSAX PAaCCMOTPEHMs YUeOHBIX IPUMEPOB Ha MOIMYJIAPHBIX A3bIKax mporpamMmupoBanus. [lesiblo paGoThl sSBISETCS HCCIIEI0Ba-
HHUE BO3MOYKHOCTEH 53bIKa mporpammupoBaHus C# s pa3paOOTKH HMPOrpaMMHOTO OOeCTedeHus], aHAIM3UPYIOLero Ge3omac-
HOCTB B JIOKQJIBbHBIX KOMITBIOTEPHBIX CETAX M KOMIIBIOTEPHO-MHTETPHPOBAHHBIX CHCTeMax. 3afaya: pa3paboTaTs MporpaMMHOE
obecrieueHne Ik CKAHUPOBAHHS TOPTOB CETEBBIX YCTPOWCTB B KOMIIBIOTEPHBIX CETAX M KOMIBIOTEPHO-HHTEIPUPOBAHHBIX CHCTE-
Max Julsl ayiuTa HHPOPMAMOHHON 0€301acHOCTH, NCTIONB3YsI CPEACTBa U OHOIMOTEKH sI3bIKa mporpamMmupoBanus C#, nccieno-
BaTh MPEHMYIIECTBA ¥ BO3MOXKHOCTH HCIIOJIB30BaHMUS 3TOTO SI3bIKa IPOrpaMMHUPOBAHUS JUTsl JaHHOW 3anaun. MeToabl Hecaeno-
BaHHUii: TEOPHsT KOMIBIOTEPHBIX CeTeil, 00bEKTHO-OPHEHTHPOBAHHOE IPOrPaMMHUPOBaHKE, TEOPHUsI aJITOPUTMOB U CTPYKTYP AaH-
HBIX, TEOPHS TECTHPOBAHHS IPOrpaMMHOro obecrieueHus. BeiBoabl. B 310ii paboTe ObLIN HCCIeI0BaHBI BO3MOXKHOCTH U ITPEHMY-
HIeCTBa s3bIKa mporpammupoBanus C# 11 pa3paboTKH MPOrpaMMHOT0 00ecIieUeHus aHan3a KHOepOe30acHOCTH KOMIBIOTEP-
HBIX U KOMITBIOTEPHO-UHTETPUPOBAHHBIX CHCTEM. B Xo/1e paboThl pa3paboTaHO MporpaMMHOE oOecTieYeHne, aHATU3UPYIOIIEee HH-
(opMaroHHYI0 6e301aCHOCTD B JIOKAIBHBIX KOMITBIOTEPHBIX CETSAX U KOMIBIOTEPHO-HHTEIPUPOBAHHBIX cHCTeMax. JlaHHoe mpo-
rpaMMHOE 00ecrieueHre MOXKHO HCIIOIB30BaTh B O0YYArOMMX LEJISX IIPU U3YYeHHH si3bIka IporpammupoBanus C# u kubepoes-
OIaCHOCTH KOMITBIOTEPHBIX cHcTeM. Pa3paboTaHHOE nporpaMMHOe 00ecriedeHHe NMEeT MTOTEHIAIBEHYI0 BO3MOXHOCTD JUTS ajlb-
HEWIIero COBEPIICHCTBOBAHMS M NPUMEHEHHs B Pa3iIMYHBIX OTPACIsX JUIsl MPOBEPKH KHOepOe30MacHOCTH JIOKAIBHBIX ceTeil n
KOMIIBIOTCPHO-MHTETPHPOBAHHBIX TEXHOJIOTHI.

KawueBbie caoBa: sA3bIK nporpaMmupoBanust; C#; kubepOe30nacHOCTh; aHAIN3 YA3BUMOCTEH; CKaHep MOPTOB; CKaHEP
YSI3BEMOCTEI1; KOMIBIOTEPHBIE CHCTEMbI; KOMIIBIOTEPHO-UHTETPUPOBAHHBIE CHCTEMBI; KOMITBIOTEPHBIE CETH; HH(OpPMaIMOHHbIE
aTakKy; ayauT HHQOPMAIIMOHHOH COXPAHHOCTH.

56

