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SEMI-MARKOV RELIABILITY MODELS

Abstract. Traditional technologies for reliability analysis of semi-Markov systems are limited to obtaining a stationary
state probability distribution. However, when solving practical control problems in such systems, the study of transient
processes is of considerable interest. This implies the subject of research - the analysis of the laws of distribution of the
system states probabilities. The goal of the work is to obtain the desired distribution at any time. The complexity of the
problem solving is determined by the need to obtain a result for arbitrary distribution laws of the duration of the system's
stay in each state before leaving. An easy-to-implement method for the analysis of semi-Markov reliability models has
been suggested. The method is based on the possibility of approximating probability-theoretic descriptions of failure and
recovery flows in the system using the Erlang distribution laws of the proper order. The developed computational scheme
uses the most important property of Erlang flows, which are formed as a result of sieving the simplest Poisson flow. In this
case, the semi-Markov model is reduced to the Markov one, which radically simplifies the analysis of real systems.

Keywords: semi-Markov reliability models; approximation by Erlang distributions of the proper sequence.

Introduction

The elementary model of the system in the
reliability theory definitions [1-3] is described as
follows. The system can be in one out of two states
during its functioning procedure:

Eo means the system is functioning normally,

E 1 means the system failed and is being recovered.

Recovery failure procedures are random. To
describe them, let's introduce the following:

foa(t) is the distribution density of the random
duration of the system's stay in the state E o prior to
entering the state E 4;

fio(t) is the distribution density of the random
duration of the system's stay in the state E iprior to
entering the state E o;

H oo(t) is the conditional probability that the system
at time point t would be in the state E o, unless it was in
the state E oat the initial point;

H 01(t) is the conditional probability that the system
at time point t would be in the state E o, unless it was in
the state E gat the initial point;

H 01(t) is the conditional probability that the system
at time point t would be in the state E 1, unless it was in
the state Eqat the initial point;

H 10(t) is the conditional probability that the system
at time point t would be in the state E o, unless it was in
the state E ;at the initial point;

H 11(t) is the conditional probability that the system
at time point t would be in the state E 1, unless it was in
the state E ;at the initial point.

A set of relations are obtained describing the
possible dynamics of the system states.

Let E=(E)), i=1,2,...,n be the set of possible system
states.

A system that was in the state i at the initial point
can be in the state j at point t as follows. Firstly, unless
j=i, the system may not leave the state i until the point t,
or exit this state and go back thereto by the point t. The
related mathematical model is as follows:

t
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Secondly, unless j # i, the system may find itself in
this state, passing to certain intermediate state k at some
point z<¢. Herewith

t
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Here Pj is the probability of the system transition
from the state i to the state j.
In the considered reliability theory problem, when
E = (Eo,E1), the ratios (1), (2) are simplified.

t t
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The resulting system of integral equations (3)-(6)
is solved using Laplace transformations. As it is known,
the Laplace transformation of the function u(t) is a
function

L(u(t) = Tu(t)e‘Stdt = % L(u(t) = %u*(s). @)
0

Applying the transformation (7) to the ratios (3)-
(6), their Laplace image is obtained:

o0 =<0 Fou®)+ FaOH 1O, ©)
H01(8) = f 01(S)H 11(5), 9)
H'10(5) = f 10 (s)H 00 (s), (10)

H™11(5) = %(1— 106+ f 10(S)H 01(s). (1)
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The resulting equations must be solved by
expressing the unknown functions Ho(s), H0a(s),
H™10(s), H™11(s) through Laplace images of known
densities fou(t), f1o(t).

Applying the relations (10) to (8), the following is
obtained

* l * * * *
H oo(S)=g(1—f 01(8) + f 01(8) f 10(S)H (o (8).
where from

H 00 (8)A— f01(5)  1(8)) = %(1— o),

H*oo(S)Z1 1*_f Ol(f) : (12)

$1-1f g1(s)f 10(s)
Similarly, the following is obtained

' (9) _1a- f*01(5)) f* 10(8). (13)
S 11 g1(s)f 10(s)

H14(s) > l*_f lO(f) : (14)
S 1-1 g1(s)f 10(s)

H*10(5)=£ (A-f 100D F 01(5) (15)

S 1 f700(s) f 10(5)

Thus, the solution of the system reliability analysis
problem is reduced to the following two-stage
procedure. One should obtain the Laplace images f 01(S),
f 10(s) of the known densities f o1(t), f 10(t) at the first
stage. The desired functions H*00(t), H*01(t), H*10(t),
H*11(t) describing the dynamics of the system states
are processed using the inverse Laplace transformation
at the second stage.

Let’s represent the results of solving this problem
for a textbook instance when the system is considered
Markov. Here with

0= 0=
Then H 00 (s) = ﬁ (16)
Hio(s) = m 17)
)= (18)
H 01(s) = m (19)
The inverse transformations of the obtained
Laplace images are tabular and are as follows:
Hoo ()=~ i‘ p +ﬁef“*ﬂ>t , (20)
Hyo(t) = Ail,u —ﬁe_(lw)t , (21)

__H H —(A+u)t

Hi (t) = +———e¢ , 22
1) PRI (22)
Hou (1) = —£—-—£ e (a0t (23)

A+u

The ratios (20)-(23) represent the solution to the
problem of the system recovery analysis, containing
comprehensive information about its state at any time

A+u

point. Herewith, as expected, Hoo(s) + Hoai(s) =1,
Hlo(S) +H 11(3) =1.
So, the described computational procedure

successfully solves the given problem. However, it
should be noted that this approach has a fundamental
drawback, which is as follows. This solution in almost
all cases is a set of functions with numerical
coefficients, whose values are not related to the values
of the system parameters. That is, a point estimate of the
system state for any given set of source data is provided.
In addition, it is much more important to explicitly
obtain the dependencies of the resulting estimates of the
system functioning quality on the numerical values of
its parameters for the actual practice of the system
operation. Only in this case, the system analysis
problem can be considered solved completely, since
only in this event it becomes possible to develop any
recommendations to improve the system efficiency, i.e.,
to solve the structural and parametric optimization
problems.

Thus, the problem of searching for the method of
in-depth analysis of semi-Markov systems, focused on
obtaining the resulted analytical relations, as well as an
explicit dependence of the probability distributions of
the system states on the values of its parameters appears
relevant. A possible direction of searching for an
approximate solution to the problem is as follows. The
space of wvalues and parameters of the system
accumulates a set of points generating an orthogonal
plan. The problem is solved by a known numerical
method for each point. Standard statistical processing of
results of such a multifactorial orthogonal experiment in
terms of the system parameters number that specify the
dynamics of its functioning makes it possible to obtain
the desired relations. This approach is reliable, though
its constructive drawback is evident, that is the related
computational procedure is knowingly cumbersome.
Herewith, the complexity level of its implementation
depends in an unpredictable way on the level of
required accuracy of solving the problem.

Literature data analysis

The generated problem of analyzing semi-Markov
systems is being actively discussed. In [1-3], a general
approach to solving the problem is suggested, which
reduces to solving the integral equations system.
Herewith, the attention is drawn to the complexity of its
implementation for many practical situations. In view of
this circumstance, the general problem in a very large
number of works is simplified. In [4], the problem of
evaluating the queuing system efficiency along with a
semi-Markov incoming flow was considered. It resulted
in obtaining the probability distribution of its states. In
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[5], a stationary probability distribution for the semi-
Markov model of production system was also obtained.
The same result was obtained in [6] for a set of
computer network analysis problems. Similar research
results are given in [7-13] for various options of
descriptions of failure and recovery flows. A summary
of well-known publications on the issue of the semi-
Markov systems analysis allows for the following
conclusion. For an extensive class of problems in the
study of semi-Markov systems, there is no simple and
convenient method for analyzing the dynamics of states
of such systems for the purpose of practical
implementation. This circumstance determines the issue
relevance and the study purpose.

3. The study objective is to develop a fast
approximate method of analyzing semi-Markov systems
along with the controlled accuracy of the result.

4. The basic result. Method of analyzing semi-
Markov models.

To solve the problem of analyzing semi-Markov
systems, an approach based on a special approximation
of real processes within the system is suggested. Such
an approximation should meet the following
requirements. Firstly, its implementing functions must
be parameterized, i.e., proper selection of their
parameters allows ensuring the required accuracy of
descriptions of real processes within the system.
Secondly, the approximating functions should allow for
the simplicity of performing the direct and reverse
Laplace transformations.

It is convenient to select the Erlang distribution
laws of the required sequence as such functions. The
related functions possess the following number of
important benefits:

— they are positive for [0,/ and integrable;

— changing the parameters of the Erlang
distribution density allows changing the mathematical
expectation, variance, asymmetry and kurtosis of the
related random variable within a wide range.

However, the decisive benefit of Erlang
distributions is that the events flow described by this
distribution is a screened Poisson flow. In particular,
unless the Poisson flow of events is screened, by
selecting each nth event therefrom, then the random
interval between these events shall be described by an
Erlang distribution of the sequence n. The most
important property of the Erlang flow to be generated
by the Poisson flow allows it to be constructively used
to analyze the semi-Markov models practically
regardless of the type of probability distributions of the
real system. The related technique is two-stage.

The distributions describing the incoming failure
and recovery flow of the real system are independently
approximated by Erlang distributions of the proper
sequence at the first stage. Herewith, histograms of the
related random variables are generated in a standard
way by previous processing the source data on the
duration of the system's stay in a state of normal
functioning prior to the failure and the duration of
recovery. These histograms are used to assess the
approximation parameters of Erlang distributions via
the max verisimilitude method.

The obtained pair of Erlang distributions is applied
to construct the Markov approximation of a real semi-
Markov system at the second stage as follows.

Let the input of the analyzed system (E o,E 1)
receives an Erlang flow of the sequence n 1 with the
distribution density of the interval between failures

fo (1) = AMt" e and the service sequence is an

Erlang flow of the sequence m fyo(t) = £M2t™ e~

This diagram is schematically shown in Fig. 1.
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Fig. 1. System functioning diagram

Let us consider the technology of analyzing such a
semi-Markov system that does not require solving an
integral equations system.

Let the distribution law of the duration of the
system's stay in the state i prior to the transition to the
state j be given as follows: E;(t)=P(z j < t). Here zj is
the random duration of stay at i prior to transition into j.
Then Qj(t)=P(zj>t)=1-F>ij(t) is the probability that the
transition from i to j at the interval [0,t] did not occur.

Now let's introduce

Fij(t+7)=P(z ;< t+7) is the probability that the
transition occurred at the interval [0, t+7];

Qij(t+7)=P(zij>t+7)=1-Fij(t+7) is the probability
that the transition from i to j at the interval [0, t+7] did
not occur;

Qij(t,t+7) is the probability that the transition from
i to j at the interval [t, t+7] did not occur.

It is clear that

Qjj (t+7) =Q; (G (t, t+7), (24)
where from Qjtt+7)= % (25)

Later one shall introduce the probability of
transition from i to j at the interval [t, t+1].

Wij (t,t+T) :1_Qij (t,t+T) =
_1_Qij(t+f) _ QO -Qt+7)

= (26)
Qij () Qjj (t)
_(QA-FRy®)-A-Ft+7) Fyt+7)-F(t)
B 1-F (1) - 1-R)
Now let's consider the value

ﬂlj (t) _ dWl(JjE-t,t) _ 1!|_r1'g) Wij (t,Tt +T) _

L G 1O fim ':lj(t+f)—':|j(t)X @
=0 (- F'J ®) 7—0
1 1 dR®  f®
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dF; (t

uhere f; (t) = ) is the distribution density of the
random variable z.

The function Aij) introduced according to (27)
defines the transition intensity. It follows from relation
(3) that this transition intensity can be defined as the
conditional probability density of transitions at time
point t, provided that no transition has occurred till this
point. This general approach to assess the transition
intensity is inconvenient, since the transition intensity
value obtained according to (27) is a function of time. In
addition, when solving practical problems, it is
important to know the mean value of transitions
intensity. This value is easily and regularly obtained as
follows. For a given density distribution fij(t) of the
duration of stay at i prior to leaving for j, let us calculate

o0
the mean value of this duration: 7 (t) = jtfij (t)dt.
0

Let's set the intensity 4i(t) of the transition from i

to j by an Erlang distribution of sequence n, that is

_apntt
fa(t) = =R

e~ Here with

o0
jt”e"“dt.
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then Fij(t)z’l_ e~ Myt — A nl n
(n-Dty 1!

NCENPIEEE

Then the related intensity of the transition from i to
j shall be equal to

4j(t) =17 =n/4.

The obtained relation is quite consistent with the
concept of an Erlang flow of sequence n, as a screened
simplest flow wherefrom every nth event is extracted. It
is clear that the intensity of the obtained extracted flow
in this case is n times less than the intensity of the
source flow. Let's go back to the formulated problem.

So, the incoming flow and the queuing flow are
described respectively by Erlang distributions of
sequences n 1 and ny. Then the equivalent diagram
describing the processes of such system functioning is

as shown in Fig. 2.
< Ly

Ey >
Fig. 2. Graph of states and transitions within the system
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The final probability distribution of states within
the system is known to be as follows:
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Thus, the suggested technique allows to analyze
single-channel semi-Markov systems, for which a
satisfactory quality approximation of the incoming flow
of requirements and the flow of their queuing by Erlang
distributions of the appropriate sequence is obtained.
The spread of the promising concept of representing
models of real systems by the Erlang approximations
allows applying effective technologies of state phase
aggregation [14]. In addition, it should be noted, that the
suggested approach can be used to study multi-threaded
queuing systems with differences in priorities defined
by the pairwise comparisons method [15].

Conclusions

An easy-to-implement method for approximating
models for semi-Markov systems has been suggested.
The computational efficiency of the method is defined
by the following principal features of the analyzed
systems. Firstly, there is a possibility of using the
Erlang approximations to describe probability
distributions that define the processes of system
dynamics. Secondly, the simplicity of the obtained
ratios allows to solve both the problems of analyzing the
system reliability, and also the problems of their
structural and parametric optimization.
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HaniBmapkiBcbki Mogeni HaailinocTi
JI. T. Packim, {. B. Cesrkig, 1O. B. Isanuuxin, P. O. Kopcyn

Aunoranis. Tpaguuiiini TexHosoril aHamizy HagifHOCTI HamiBMapKiBCBKUX CHCTEM OOMEXYIOTHCS OJepiKaHHIM
CTaI[iOHAPHOTO PO3MOJiny HMOBipHOCTEeH craHiB. IIpoTe, mig 4Yac BHUPIMICHHS NPAKTUYHHUX 3aBAaHb YIPABIIHHA y TaKUX
CHCTeMax 3HaYHMI iHTepec Mae JOCIILKEHHS MEepexiTHNUX MpOoIeciB. 3BiJiCH BUINIMBAE MIPEAMET JOCIILKEHHS — aHalli3 3aKOHIB
posmozinay HMoBipHOCTell cTaHIB cucTeMH. MeToro poOOTH € OTpUMaHHS PO3IONUTy Ha Oyab-skuii MoMeHT dacy. CKIamHICTh
PO3B'SI3aHHSI TTOCTABJICHOTO 3aBJAaHHS BH3HAYAETHCS HEOOXIAHICTIO OTPUMaHHS PE3yNbTaTy [Uisl JOBUIBHHX 3aKOHIB PO3MOIiTY
TPUBAIOCTI TepeOyBaHHS CHCTEMH B KOXXHOMY CTaHi JO JOTJIAAYy. 3alpONOHOBAaHO IPOCTHI y peanizauii METOJ aHami3y
HaMiBMapKiBCBbKUX Mojesell HaxiiiHocTi. MeTon 3acHOBaHMI Ha MOXJIMBOCTI ampoKCHMAaIlil TEOpeTHKO-IMOBIPHICHUX OITHCIB
MOTOKIB BiIMOB Ta BiJHOBJEHHS B CHUCTEMi 3a JIOIIOMOrOI0 3aKOHIB posmoniny Epmanra HajmexxHoro mopsiaky. Pozpobnena
0o04YHCIIOBAIbHA CXeMa BHKOPHCTOBYE HailBa)KJIMBIly BJIAacTUBICTh MOTOKIB Epmanra, mo ¢(opMyroThCs B pe3yJbTarti
MIPOCIIOBaHHS HAaHMPOCTIIIOrO MyaCCOHIBCHKOTO MOTOKY. [IpH koMY HamiBMapKiBCbKa MOJEIb PEIyKYEThCS 10 MapKiBChKOI, 110
PaaMKaIbHO MOJICTIIYE POLEAYPY aHaNi3y PealbHUX CHCTEM.

Knrmo4oBi cnmoBa: HamiBMapKiBChKi MOJIENi HAAIMHOCTI; apoKCUMaIlist posnofinamu Epianra HanexHOTO MOPSIIKY.

IMonymapkoBckHe MOJeIN HAIEKHOCTH
JI. T'. Packun, f1. B. Catkun, 0. B. UBanuuxun, P. O. Kopcyn

AnHotanus. TpaguIUOHHbIE TEXHONOTHM aHalIM3a HAAEKHOCTH TOJYMApPKOBCKUX CHCTEM OIPaHUYMBAIOTCS
MOJY4YECHUEM CTAllMOHAPHOIO paclpelieleHUusl BeposTHOCTEH cocrosHud. OJHako, NpH pEIICHUM IPAaKTUYECKUX 3ajad
YOpaBlIeHUA B TaKUX CUCTEMaX 3HAUYMTEIIBHBIM MHTEpEC MMEET HCCIEOBAHUE IEpPEeXOAHBIX IpoueccoB. Orcroma ciemyer
IpeaMeT HCCIEeJOBaHUs — aHalM3 3aKOHOB pacIpeNeNIeHUs] BEepOSTHOCTEH COCTOSHHI cucTeMbl. llempro paboThl sBisieTCs
MIOJTyYeHNE MCKOMOTO PaclpeeeHns Ha JI000i MOMEeHT BpeMeHH. CII0KHOCTD pelIeHHs TOCTABICHHON 3aa4l ONpPEeaeNsieTcs
HEOOXOIUMOCTBIO TOTyUEHHUs] pe3ynbTaTa s IMPOM3BOIBHBIX 3aKOHOB paCHpeeNieHHs MPOAOIKUTEIBHOCTH MpPeOBIBAaHUS
CUCTEMBI B Ka)XXJIOM M3 COCTOSIHMM A0 yxoza. IIpeanokeH mpocToil B pealu3alyu METOJ aHaIM3a MOJIYyMapKOBCKMX MOAEIEH
HaJEKHOCTH. MeTo OCHOBaH Ha BO3MOKHOCTH aNNpPOKCHMAIMH TEOPETHKO-BEPOSITHOCTHBIX OMHMCAHUH MOTOKOB OTKA30B U
BOCCTAHOBJICHHH B CHCTEME C TIOMOLIbIO 3aKOHOB paclpefesieHuss OpiaHra Hamjexalnero mnopsaka. PaspabGortanHas
BBIYHCITUTENIFHAS CXE€Ma HCIHOJIB3YeT BaKHEIee CBOHCTBO IIOTOKOB DpiaHra, (OPMHPYIOIIMXCS B Pe3yJbTaTe MPOCEHBAHUS
IIPOCTEHILEro IyacCOHOBCKOrO NOTOKA. IIpu 3TOM moiryMapKOBCKas MOJENb PEAyLHpYEeTCs K MAapKOBCKOM, 4TO paJuKalbHO
yIpoliaeT NpoueLypy aHalnu3a peaabHbIX CUCTEM.

KniodeBsle cioBa: TOMyMapKOBCKHME MOJENH HAASKHOCTH; AaNIPOKCHMAIMSA pacIpeleNeHUs MU ODpliaHra
HaJUIeXKALIEro HOpsIKa.
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