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Abstract. The subject of research is image normalization based on key points analysis. The purpose is development of
mathematical models and their software implementation for normalization of image geometric transformations based on the
analysis of SIFT, SURF, ORB, BRISK, KAZE, AKAZE descriptors; the model application for comparative analysis of
descriptors based on expert assessments of normalization quality, time costs and other indicators; construction and usage in
experiments the own dataset with 100 real image pairs which contains scenes of five types: buildings, plane images outside,
plane images inside, natural and artificial textures; making conclusions about the performance of the considered descriptors
to solve the normalization problem. Such methods are applied: SIFT, SURF, ORB, BRISK, KAZE, AKAZE descriptors for
describing key points, the Nearest Neighbor Distance Ratio method or symmetric method for search of corresponding pairs
of key points from different images, the RANSAC method for rejecting false correspondences and obtaining a homography
matrix, similarity measures, software modeling. The results obtained: experimental normalization results by SIFT, SURF,
ORB, BRISK, KAZE, AKAZE descriptors for 100 real pairs of own dataset (normalized images, their overlaps,
quantitative descriptor evaluation, precision and recall estimation, time costs estimation, expert quality assessment,
conversion of all indicator values to an 8-point rating scale); summary diagrams and conclusions about advantages and
weaknesses of the compared descriptors; recommendations about the most-suitable-algorithm selection for solving
normalization problem in specific cases.

Keywords: normalization of geometric transformation; detector; descriptor; SURF; SIFT; BRISK; ORB; KAZE;
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Introduction

Review of the current state of solving computer
vision problems. Today, computer vision is
experiencing a period of significant progress in problem
solving, on which researchers have been working for
decades. Meaningful advances have been made in
detection, segmentation, classification of objects, image
search by pattern, image generation, and other tasks.

For many years, most approaches of image
analysis have been based on transition from an image to
a feature space, which contains basic information about
the whole image or its characteristics, and has a denser
representation than the image. After the transition, such
features are compared with the appropriate method, and
then a decision is made according to the problem which
is being solved. In addition to being informative and
having reduced dimension, the obtained feature should
be as insensitive as possible, i.e., invariant to image
geometric transformations, changes in lighting, noise,
local occlusion, for example, when objects are partially
overlapped, or an object part extends beyond an image.

There isn’t any universal way to describe images
with a feature set. The choice of feature space and their
processing method depends on a specific problem. The
weakness of the classical feature approaches is the need
for complex configuration, where it is necessary to set
various parameters on the basis of heuristic information.
Values of such parameters affect the final result
significantly [1, 2].

In recent years, neural networks have provided a
significant breakthrough in computer vision. In 2012,
the AlexNet neural network took part in the annual
ImageNet competition and showed the best results in

solving the object classification problem with a number
of errors 15.3% against 26.2% of the runner-up [3].
Then, in 2019, the classification quality with neural
networks equaled human capabilities. The combination
of achievements of classical analytical feature approach
with a neural network one has a great perspective.

But even now, there are a lot of tasks where the
classical feature approach is necessary. Such tasks, as
cartography, stitching of panoramic images etc., depend
on solving the problem of normalization (compensation)
of present geometric transformations.

Normalization problem and approaches to solve
it. In the work, the normalization means the process of
compensation of geometric transformations that
distinguish one image from another. This matter has
been investigated for a long time. The fundamental
work [2] about normalization proposes two main
approaches: tracking and parametric and also considers
some methods for each of these approaches.

The tracking approach implies the gradual
compensation of geometric transformations with many
steps. The processed image is compared with the pattern
at each step, and then it undergoes a tiny geometric
transformation that compensates only a part of the
whole geometric transformation, bringing the processed
image closer to the pattern. As a result of all steps, the
processed image will become a pattern, and parameters
of a general geometric transformation will be defined.
This approach is applied to tracking and targeting tasks.

The parametric approach is aimed to determine
parameters of an entire geometric transformation at
once. Then the found transformation is compensated,
and the processed image turns into the pattern. This
approach is used more widely.
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In [2], for both approaches, it is offered to put an
integrated method of construction of functionals which
are based on the moments of a different order, but only
cases with simple geometrical transformations are
considered. Also, for all integrated methods, a
significant problem is the background that can be
partially or completely changed. In [4,5], to solve the
problem of normalization in the conditions of complex
geometric transformations and local occlusions, it is
proposed to use the method of one-dimensional
normalizations and decomposition of complex groups of
transformations into compositions of simple ones.
However, such methods solve the problem only
partially. This article is devoted to analyzing the
normalization on the basis of the descriptors of image
key points.

Construction of image features based on
descriptors. In the classical approach, a solution of a
big amount of tasks is based on the key points definition
and description of their neighborhoods by a feature
vector with further processing of obtained vectors. So,
there is a transition from an image to a space of key
points feature vectors.

An algorithm that gets key points is a detector, and
an algorithm that gets a description of the found points
is called a descriptor. Also, a descriptor means a feature
vector of a key point.

Over a long period of existence of computer vision
tasks, a significant number of algorithms have been
developed to detect and describe key points, which
differ in varying degrees of invariance to geometric
transformations, changes in lighting, angles of view, and
time costs values. The implementation of most of these
algorithms can be seen in popular software libraries. For
instance, the open library OpenCV contains SURF,
SIFT, ORB, BRISK, KAZE, AKAZE, LATCH, VGG,
LUCID, DAISY, FREAK and other descriptors.

Statement of the research task. This work is
dedicated to:

— research of the parametric normalization
approach, where key points and their descriptors are
used to find out the normalization parameters;

— comparing the quality and time costs of the
normalization process based on different descriptors.
For comparison were selected the full-cycle descriptors,
such as SURFI128, SURF64, SIFT, BRISK, ORB,
ORB1000, KAZE, AKAZE.

In this work, it was necessary:

— to consider each step of normalization in detail;

— to develop a mathematical and software model
for further experiments on the photo image pairs
normalization with the different descriptors;

— to create the own dataset for experiments;

—to draw conclusions in the comparative aspect
about the quality and time costs of normalization basing
on the considered descriptors.

Main material of the research

1. Normalization of geometrical transformations
based on the descriptors. The normalization method
based on descriptors uses the basic property of
projective transformation

Wy hy o s
H=|hy hy h;3
hy hyy g3

about the possibility of obtaining parameters from

coordinates of 4 points before and after the
transformation [6, 7]:
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parameters of projective transformation; A(x4,v,),
B(xg,yp), Clxc,yc), D(xp,yp) and A'(xy,y4),
B'(xB'ayB')a C'(xC'ayC')a D'(xD'ayD')_4 pOintS
before and after the transformation on B, and B,
images respectively, AB, AD — segment lengths and
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dy = (e =yp ) xcr —xp).
But in practice, the corresponding points on B,

and B, images are unknown. Descriptors that detect

and describe the key points can be used to solve the
problem of establishing the corresponding points. Key
points will be found with some inaccuracy because
detectors and descriptors are sensitive to significant
geometric and lighting transformations. The search of
corresponding points that is defined based on the
descriptor similarity will also make false pairs.

Therefore, in practice, it is desirable to use more
than 4 pairs of found corresponding points to determine
the geometric transformation parameters more
accurately.

The normalization algorithm used in the work
consists of the following steps:

1) key points search and their description with
feature vectors, i.e., the descriptors, for B, and B,
images;

2) definition of the correspondence between the
key points on B, and B, images;
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3) determination of geometric transformation
parameters, which distinguishes B, image from B,
image;

4) B, image normalization to B, image (direct
normalization), or B; image normalization to B, image

(inverse normalization).

Further, let’s consider each step in detail.

Stepl. To define key points and their description,
the work considers full-cycle algorithms (detector-
descriptor algorithms), which perform both key points
detection and description. Based on the multi-source
analysis, the detector-descriptor algorithms SURF128,
SURF64, SIFT, BRISK, ORB, ORB (1000), KAZE,
AKAZE were chosen as the most perspective and
interesting for normalization. Table 1 shows the brief
information about these algorithms. The principles of
constructing descriptors according to these algorithms
can be found at the links [8—13].

However, a large number of existing algorithms
and the lack or inconsistency of information about their
comparison, recommendations for their use in different
conditions make it difficult to understand strengths and
weaknesses of certain descriptors and to choose the best
for solving own task. Thus, there is a need for further
descriptor research in the comparative aspect and
obtainment of sound recommendations for their usage.

Table I — Brief information about the considered full-cycle
descriptors (detector-descriptor algorithms)

Name of full cycle descriptors,
year, source, type of license

Detector: type;
Descriptor: type, size

SIFT (Scale Invariant Feature detector: blob;
Trans-form), 2004, [8], descriptor:numeric,
non-commercial use 128

SURF (Speeded Up Robust detector: blob;
Features) 2008, [9], descriptor: numeric,
non-commercial use 128 or 64

ORB (Oriented FAST and Rotated | detector: corner;
BRIEF)/ORB1000/ 2011, [10], descriptor: binary,32
free use

BRISK (Binary Robust Invariant
Scalable Keypoints) 2011, [11],

detector: corner;
descriptor: binary,64

free use
KAZE 2012, [12], detector: blob;
free use descriptor:numeric, 128

A-KAZE (Accelerated -KAZE)
2013, [13], free use

detector: blob;
descriptor: binary, 61

Mentioned below, the term “descriptor” is
employed addressing detector-descriptor algorithms,
excluding some cases where it is necessary to discuss
the detector part of the full algorithm. The term
“descriptor” is also used when it refers directly to a key
point feature vector that was received as the result of
applying the algorithm.

So, one of the detector-descriptor algorithms
constructs the sets

D, ={(M1 (x,¥).d, )} and D, ={(M2 (p,q),dz)}

for images By and B, respectively, where M (x,y) —

a key point, d; — a descriptor (vector with features

¢, ) for B image; M, (p,q) — a key point, d; —a
descriptor (vector with features CZV) for B, image;
v=1...V, V — the dimension of the feature vector,
which is determined by the certain descriptor method.
Step 2. To establish the matches between key

points, one should compare their descriptor vectors. As
the result of matching the set of corresponding pairs

7 ={(My; (x.3). M2 (£.9))} (7] < min(|Dy].|Ds )

is formed. To search for corresponding pairs, the
Nearest Neighbor Distance Ratio (NNDR) method
(modification of k-nearest neighbors, k=2) was used,
and the symmetric method was covered in order to
analyze some estimates of normalization.

The NNDR method consists of finding for each

point My; (x,y) and its descriptor dj; on the image By
two most similar descriptors d,; and d,, on the image
B, . To measure the similarity of numerical descriptors
was applied Manhattan distance (L1 norm)

|4
P(dliadzj ) = Z‘cliv —Cj,
v=l

which  becomes
descriptors.
The point M,; with the descriptor d,;, of B,

b

Hamming distance for binary

image was considered the match the point M,; with the
descriptor dj; of B; image, if the inequality
p(dy;»day )
p(dii-dy)
p(dydar) < p(diindy): o -

threshold (o was equal to 0.75 in the experiments), and
a pair of points (M;, M, ;) was put into the set 7.

<o,

is satisfied, where

After processing all key points of B, image, the
same actions were performed for B, image key points
which weren’t determined as the corresponding pair for
the image B, .

The found corresponding pairs for B, image were
added to the set T .

In this approach, the result set 7 depends on the
image which is processed first. Namely, if at first
B, image key points are treated and at second B,

image key points are done, the set T will be different.

In practice, the symmetric approach for finding
corresponding pairs has also been researched, where the
set T consists only of such pairs of points (My;,M ;)

for which the similarity measure is the least

p(dijsda; )=

The symmetrical approach does not depend on the
order of By, B, image processing.
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The results of the research have shown that the use
of the NNDR method or the symmetric approach at the
step of matching gives a similar accuracy of the final
normalization, but the symmetric method has higher
time costs, almost twice (Fig. 9). The reason for this is
the fact that the symmetric approach finds much more
matches, but among the found matches, the false match
(outlier) share is significantly larger than in the NNDR
method (Fig. 1,2). This is also critical in the conditions
of a small number of obtained key points. So, the main
attention was paid to the NNDR method, and the
symmetric method was considered only in some cases.

Fig. 1. The corresponding pairs of key points were obtained
with the NNDR method based on the SIFT descriptor
(96 matches)

Fig. 2. The corresponding pairs of key points were got with
the symmetric method based on the SIFT descriptor
(217 matches)

Step 3. If there is a set T of corresponding pairs of
points, the geometric transformation parameters can be
got on the basis of the least squares method. But the set
T, besides correct matches (inliers), may contain false
correspondences (outliers), that is confirmed by
practical results (Fig. 1,2).

Such outliers would significantly affect a
geometric transformation model made with the least
squares method, and this model would not be suitable
for normalization.

Therefore, the RANSAC method was applied in
this work. It is designed to look for the best
homography matrix without taking outliers into
consideration. To be more precise, the accelerated

implementation of this method supported by the
OpenCV library, which was proposed in [14], was used.

Thereby, the applied in this paper algorithm for
search of the geometrical transformation model consists
of two stages:

Stage 1. Search for the best initial model without
considering outliers with the RANSAC method using a
geometric test. The RANSAC input is supplied with the
set T of corresponding pairs of points for B, and B,
images (constructed with the NNDR or the symmetric
method); the number of iterations N ; the threshold 6 for
estimation of match error (discarding outliers).

Repeat N times (in this work N =2000 ), on each
k-th iteration:

a) select randomly 4 corresponding pairs of points
(My;,M, ;) from the set T'.

b) check the selected subset for compliance with
the geometric test [14]. For this, every 3 pairs of points
from the subset formed in a) (every 3 pairs from 4
selected ones) are examined for the coincidence of the
traversal sequence on B and B, respectively.

The time for implementation of the entire
RANSAC algorithm can be significantly reduced with
the help of b), because if the points selected in a) do not
fit, then ¢), d), e) are omitted, and we return to a);
otherwise we move to ¢).

c) calculate the homography matrix H for the
selected 4 corresponding pairs of points.

d) define quality U, of the model Hj, namely,
how accurately the matrix Hj transforms all
corresponding pairs of points from the set 7. Model

quality U is calculated as the number of cases for
which the match error e is less than the threshold &

e(M':.My;) <8, M

where M'|; = H; M; —a reflection of point My, of the

image B; obtained with the homography H;;

(M 1i-Mo; ) €T — the corresponding pair; & — threshold

(equal 3 in the experiments); e(,)— the match error. For
example, the error can be computed as Euclidean
distance between a key point on the image B, and
reflection of the corresponding key point on the image
B, or as the total error of direct transformation Hj

(direct error) and inverse one Hj ! (transfer error).

Pairs of points corresponding, for which (1) is true, are
considered to be correct matches (inliers), others — false
matches (outliers).

e) find the model A that has the best quality Uy

Uy 2U,,.4x) > store it as H' = Hj. and construct the set

T by removing from the set 7 outliers.
At the end of the cycle, we obtain the best model

H" and the inlier set T" .
Stage II. Refinement of the initial model for the

inlier set T~ with the method of least squares. In this
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stage, it is determined the homography matrix H”¢,
for which the sum of deviations between the key points

from the set 7" on the image B, and the reflection of

the matching key points on the image B; is minimum:

>

[

)Cz,—

2
Xy, + oy, + iy N
T Iyxy, + gy, +hay

V2. =

2
N hy1 Xy, + oy, +hos
T hyyxy 3y, +hay

where h1sas Iz hayshog s o, by, sy g -
parameters of the model H%¢" x1,, v}, — the coordinate

of point M € B , Xp;5V2; the coordinate of point
*
M, B, (M. My ;) eT*.
Step 4. The direct normalization is based on the
transformation of B, with the matrix H?*’. The result

of normalization is the normalized image BlH.

Relatively, the inverse normalization is the

transformation of B, with the inverse matrix
( Hbesl )_] )
2. Software implementation of the

normalization method based on SIFT, SURF128,
SURF64, BRISK, ORB, ORB (1000), KAZE,
AKAZE descriptors. All experiments were performed
using Java language and OpenCV library. OpenCV
methods, shown in Table 2, were used to obtain
descriptors.

Table 2 — OpenCV methods for obtaining descriptors

Algorithm Elemen
t type of OpenCYV object
name
vector
SIFT CV 32F | SIFT sift = SIFT.create();
SURF(128D) | CV_32F | SURF surfl28 =
SURF.create();
surfl128.setExtended(true);
SURF (64D) CV_32F | SUREF surf64 =
SURF.create();
surfl128.setExtended(false);
ORB CV 8U | ORB orb = ORB.create();
B orb.setMaxFeatures(100000);
ORB (1000) CV_8U | ORB orb1000 =
ORB.create();
orb1000.setMaxFeatures(1000);
KAZE CV 32F | KAZE kaze = KAZE.create();
- kaze.setNOctaveLayers(3);
kaze.setExtended(true);
AKAZE CV 8U | AKAZE akaze =
- AKAZE.create();
akaze.setNOctaveLayers(3);
BRISK CV 8U | BRISK brisk =
B BRISK .create();

OpenCV class BFMatcher(int normType, bool
crossCheck) was used to find matches, where

crossCheck = false — for the k-nearest neighbor method,
true — for the symmetric approach; normType =
NORM L1 (Manhattan distance) — for numeric
descriptors, NORM_HAMMING (Hamming distance) —
for binary ones. BFMatcher class has the
bfMatcher.knnMatch() method for implementing k-
nearest neighbors and the bfMatcher.match() method for
the symmetric approach. The input parameters are
descriptor sets of the images By and B, and

KNN_MATCH COUNT - parameter k, k=2 (for the
k-nearest neighbors). After using the k-nearest neighbor
method, filterMatchesByNNDR() method should be
performed for implementing the NNDR method. At the
output, we get matches — the set of corresponding point
pairs.

The geometric transformation parameters were
searched using findHomography() function, which
implements both stages considered in the paragraph 1
(initial model search, outlier rejection and model
refinement for inliers). The input findHomography()
parameters are as follows:

— the coordinate set of the corresponding points of
images B, and B, (obtained by executing

bfMatcher.knnMatch( ) or bfMatcher.match( ));

— the method for finding homography (this
parameter was equal CV RANSAC () for the
application of the RANSAC method in the work);

— the threshold for checking inequality (1) which
was equal 3;

— an empty set to mark the outliers and inliers by 0
and 1, respectively.

The output is a homography matrix and the
completed set of outliers and inliers.

3. Dataset  description for research of
descriptor-based normalization. The
SYTOSS NURE pngPairs100 dataset was created to
research the normalization approach based on the
analysis of key points. It has 100 pairs of self-made
photos with a Sony Alpha a6000 camera, converted to
PNG format (lossless compression) and reduced to a
size of 600x400 or 400x600 pixels (Fig. 3). The original
raw images in ARW format can be found here [15]. The
dataset consists of 5 sets of image pairs, and every set
contains scenes of the certain type (20 images in each
set): Building — buildings, city; Picture outside — plane
images outside (graffiti, posters and other plane images
found at the streets); Picture inside — plane images
inside (for example, interior images, pictures, books);
Texture_artificial — artificial textures; Texture nature —
natural textures. In each pair, the images differ by
geometric transformations of wvariable complexity
(displacement, scale, rotation, change of viewpoint).

The purpose of experiments with the
SYTOSS NURE pngPairs100 dataset is to analyze in
the comparative aspect the normalization results based
on SIFT, SURF, ORB, BRISK, KAZE, AKAZE
descriptors for image pairs containing scenes of
different types taken with the same equipment, PNG
format (without compression); also, to make a general
conclusion about the most suitable descriptors, using the
normalization of a large number of real image pairs.
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To test the descriptor-based normalization in the
most complex lighting transformation, we used the
small set Day Night pngPairs3, which consists of 3
image pairs with the SYTOSS NURE pngPairs100
dataset properties (equipment, size, format, geomantic
transformation), but in each pair, one image is shot at
day and the other at night (Fig.4).

Fig. 3. Image pairs examples for each set from
the SYTOSS NURE pngPairs100 dataset:
a — Building; b — Picture outside; ¢ — Picture inside;
d — Texture_artificial; e — Texture nature

- _ ¥
Fig. 4. Image pair example from the Day Night pngPairs3

4. The purpose and content of experiments. The
purpose of the research is to identify the most

appropriate descriptors for solving the normalization
problem. To achieve this goal, a comparative evaluation
of quantitative indicators for SIFT, SURF128, SURF64,
BRISK, ORB, ORB (1000), KAZE, AKAZE descriptors
was performed at each step of normalization (key points
search, matches, outlier rejection and obtaining
normalization parameters), and what was even more
important, it was compared the normalization quality
and time costs in general.

To estimate the normalization results based on the
considered descriptors, the indicators shown below were
calculated for each pair.

4.1. Quantitative evaluation of descriptors,
precision and recall estimation (with taking found
overlap):

NP — a number of found key points; NP1, NP2 — a
number of found key points for imagel and image?2,
respectively, NPO1, NPO2 — a number of found key
points on the overlap for imagel and image2,
respectively;

NM — a number of found matches, i.e., a number
of obtained corresponding pairs of key points
(NM=NI+NO); NMO — a number of matches located on
the overlap;

NI — a number of inliers found with the RANSAC
method, NO — a number of outliers discarded with the
RANSAC method;

Precision = NI/ NM - the accuracy of finding
correct matches. Precision ratio defines a part of inliers to
all found matches, including outliers. This illustrates the
ability of the algorithm to identify points correctly and
provide the most similar description for corresponding
points and vice versa dissimilar description for
inappropriate points.

The conclusion depends on the method used to find
the corresponding pairs.

RecallO1 = NI/ NPOI — the completeness of inlier
retrieval relative to the number of all key points on the
overlap for the pattern (imagel). RecallOl1 ratio illustrates
the usefulness of the found key points for normalization.
It is also directly related to time costs because it gives the
possibility to estimate how much time was wasted on
detecting, describing and comparing points, which were
then discarded and did not participate in the construction
of the normalization model.

4.2. Estimation of time costs:

DesT — the descriptor construction time (time to
detect and describe key points on an image), DesT]1,
DesT2 — the construction time of descriptors for imagel
and image?2, respectively;

MatchT - the retrieval time of matches for an
image pair;

InlierT — the inlier retrieval time found with the
RANSAC method for an image pair;

avgDesT — the average time for one descriptor
construction;

avgMatchT — the average time for one match
retrieval;

avglnlier'T — the average time for one inlier
retrieval with the RANSAC method;

TotalNormT — total normalization time for an
image pair.
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4.3. Expert quality assessment. In this work, the
expert rate was used for the assessment of normalization
quality. The expert rate (ER) is the expert quality
assessment of normalization accuracy with a 5-point
scale: “0” — normalization failed, “1” — insufficient, ‘“2”
— satisfactory, “3” — good, “4” — excellent.

Seven independent experts participated in the 5-
point scale assessment of the normalization quality of
each image pair for every descriptor. The experts
assessed normalization quality as the overlap accuracy
of normalized and original pair images. Experts had to
evaluate the normalization accuracy in a comparative
aspect (relatively to the results obtained by other
descriptors for the same pair). If the expert believed that
the normalization quality got by different descriptors for
a certain pair is comparable, one put the same rate to
these descriptors. In the case, when all descriptors coped
equally, the expert gave the same rate to all descriptors.

The median of the expert rates of 7 experts was
taken as the final assessment quality of the experiment.

The expert rate is a relative indicator given to the
normalization results respectively to other descriptors.
Thus, it allows ranking the descriptors from worst to
best in one experiment (for a certain pair).

Value “-1” was assigned if the normalization could
not be performed due to the lack of a sufficient number
of matches to determine the homography matrix.

In this research, expert assessments were used to
estimate the normalization quality because only a
human can assess the quality of the normalized and
original image overlap most accurately. However, this
approach is time-consuming and subjective. In the
future, it is planned to conduct a research to define some
quantitative rates of normalization quality, which are
calculated after normalizing automatically and correlate
with the expert assessment maximally.

4.4. Averaging the values of indicators and the
rates. The above-mentioned rates and indicators were
calculated for 100 real image pairs from the
SYTOSS NURE pngPairs100 dataset. Then for each of
5 sets (Building, Picture outside, Picture inside,
Texture artificial, Texture nature), as well as for the
whole dataset, the mean values were computed:

— mean values of absolute indicators NP, NM, NI;

—mean values of relative indicators Precision,
RecallO1;

—mean values of time costs indicators DesT;
MatchT; InlierT; AvgDesT; AvgMatchT; AvglnlierT;
TotalNormT;

— the quantity of the same values of the expert rate
ER for each value (“07, “17, “27, “3”, “4”), as well as
the amount of cases where the normalization did not
occur due to the lack of inliers (values “-17);

—mean values of expert rates ER for each
descriptor (arithmetic mean MeanER and median).

4.5. Converting all indicator values from 4.4 to
an 8-point rating scale. To summarize and compare the
descriptors for different indicators easier, all assessment
values were converted to an 8-point scale (point 8 is the
highest mark). One of the values from 1 to 8, depending
on which interval it got into, was assigned to each value
of the indicator. The interval was calculated using the

following formula:
(min + i* step; min + (i+1)*step]

where step = (max - min) / 8, max, min — maximum and
minimum values of indicator respectively, i =0,...,7. If
a larger value was considered the best for an indicator,
then the highest score 8 was assigned to the values from
the last interval (min + 7 * step, max]. Vice versa, if a
lower value was regarded as the best, then the highest
score 8 was assigned to the values from the first interval
[min, min + step].

5. Normalization research results based on the
descriptors SIFT, SURF128, SURF64, BRISK, ORB,
ORB(1000), KAZE, AKAZE. The limited volume of
this paper makes it possible to present only generalized
results for the whole dataset. The details of normalization
results for each pair, as well as, many summary tables
and diagrams for each of the sets and the entire dataset,
can be found here [15]. The normalization research
results averaged for the whole dataset are shown in
paragraph 5.1-5.4. The main received regularities for
each type of scenes are illustrated in 5.5.

5.1. Comparison of descriptors by the mean
number of key points, matches (with the NNDR
method) and inliers. The experiments showed that a
significant excess of the mean NP is characteristic for
the ORB algorithm (from 2.6 times for the BRISK
algorithm to 11 ones for the AKAZE algorithm)
(Fig. 5). Sorting out the mean values of NP, one can see
that, according to the number of found points, the
algorithms are placed in the following order (from
larger NP to smaller one): ORB >> BRISK >> SURF64,
SURF128, SIFT >> ORB1000 > KAZE, AKAZE.

S000 Mean number
3000 of key points and matches
for the whole dataset
7000
E 6000
E 5000
% 4000
E 3000 i
2000 | H
1000 | H
NP NMO | NI
u SIFT 1994465 | 478381 41625
BSURF128 | 2195616 264,586 210,788
'WSURF64 | 2214025 340,76 264,42
'mORB 8723.315 1188,57 1006,32
m ORB1000 93947 159,16 128,76
'WBRISK | 3391601 437232 382,04
KAZE 762,634 151,075 124,57
|mAKAZE 722,84 125,553 107,777

Fig. 5. Mean number of key points and matches
found at the first three stages of normalization for
SYTOSS_NURE _pngPairs100, i.e., the mean of such rates:
a number of found key points (NP); a number of matches
found with the NNDR method and located on the overlap (NMO);
a number of inliers found with the RANSAC method (NI)
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The largest and least mean values of NMO, NI are
the same as for NP: the largest is for the descriptor
ORB, the least — for ORB1000, KAZE, AKAZE that
can be seen in Fig.5. This figure also shows the
numerical values of mean NP, NMO, NI. Changes of
NMO, NI values for different descriptors have the same
regularity. Descriptors can be arranged by NI (from
larger to smaller) as follows: ORB >> SIFT > BRISK >
> SURF64 > SURF128 > ORB1000, KAZE > AKAZE,
where the SIFT algorithm is seen moved from 5th
position (by found NP) to 2nd position, overtaking
BRISK, SURF64, SURFI128, i.e., it has the higher
percentage of key points which will be used for
normalization.

The descriptor evaluation by NP, NMO, NI was
carried out under the assumption that the greater the
number of NP, NMO, NI, the more accurately
constructed the normalization model and, therefore, the
higher the normalization quality, however, too much
quantity of such ones requires a lot of time that will be
presented below.

5.2. Descriptor comparison by Precision and
Recall ratios. The descriptor evaluation by Precision
and Recall was performed supposing that:

— the higher value of Precision, the more alike
description of really similar objects (points) we get with
this algorithm and the more unlike description for
dissimilar ones. In addition, with high Precision, there is
less unnecessary work when it takes time to find
matches, some of which are outliers and will be rejected
with the RANSAC algorithm;

— the higher RecallO1, the less time wasting for
getting key points at the first step. RecallO1 shows the
percentage of key points found at the 1st step, which
will be used to define a homography matrix at the 3rd
step, i.e., allows estimating a share of found points
actually used for normalization.

The results of Precision and RecallO1 research for
the whole dataset are presented in Fig. 6.
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Fig. 6. Mean precision and recall for the whole dataset
SYTOSS NURE pngPairs100: a — mean precision
(Precision); b — mean recall (RecallO1)

The mean values of Precision for all descriptors
vary in the range from 0.77 to 0.87, i.e., at the average
for the different descriptors, the RANSAC method
rejects from 23 to 13 percent of NO, which were

incorrectly defined as matches by the NNDR method
(Fig. 6).

The highest (best) Precision was shown by the
descriptors BRISK, SIFT, the worst one — by SURF64.
In general, by Precision value, the descriptors can be
sorted from the best to the worst as follows: BRISK,
SIFT > AKAZE > ORB > KAZE > ORBI1000 >
SURF128 > SURF64.

The mean values of RecallO1 throughout the
dataset show a variance in the range from 0.1
(SURF128) to 0.22 (SIFT) (Fig.6). The descriptor ORB,
which has a significant excess in the number of key
points comparing with the other descriptors (Fig.5), has
mean RecallO1 equal 0.12, i.e., only 12% of the points
found are used to determine a normalization matrix. By
RecallO1, the descriptors can be ordered (from the best
to the worst) as follows: SIFT >> KAZE > AKAZE >
ORB1000 > SURF64 > ORB, BRISK > SURF128.

5.3. Time costs comparison. Let’s consider time
costs searching for a descriptor, a match (method
NNDR) and an inlier (Fig. 7). According to Fig.7, ORB
shows significantly less time to calculate one descriptor
(AvgDesT), then ORB (1000) and BRISK come, and
after them AKAZE. SIFT, SURF64, SURF128
descriptors appear next with comparable time. The
KAZE descriptor illustrates significantly more time.
The average one-match search time (AvgMatchT) with
the NNDR method is essentially more consuming for

ORB. AKAZE and ORB(1000) has the least
AvgMatchT.
Average retrieval time
for single-descriptor, single-matching,
single-inlier for whole dataset (ms)
03 .
025 |
0.2 .
0,15 | %
' i
01 | %‘:
’ =
.
0,05 | ] § 1
A > @ & ¢ g <
& v & & ) Y
< < &S I\ N P ’
NS & o
= AvgDesT, ms ~ AvgMatchT, ms m AvglnlierT, ms
Fig. 7. Average retrieval time for a descriptor,
a matching and an inlier for the whole dataset
The average retrieval time for one inlier

(AvglnlierT) is longer for ORB1000 and AKAZE
algorithms. For all algorithms, the values of AvgInlierT
are significantly less than the values of AvgDesT or
AvgMatchT. However, if we compare the values of
AvgDesT and AvgMatchT for different descriptors, we
do not see a single pattern. For KAZE, the time of
AvgDesT is 3 times longer than AvgMatchT, and for
other algorithms, AvgDesT is essentially less than
AvgMatchT, but for ORB, AvgDesT is significantly
less, more than 14 times.
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However, the most useful for future conclusions in
a comparative aspect is the total time for normalizing
one image pair averaged for the whole dataset
(TotalNormT). Fig.8 presents the time spent on the
definition of all descriptors on the first and second
images (DesT1, DesT2); all matches MatchT found with
the NNDR method; all inliers InlierT for one image pair
(all-time evaluations were averaged for the whole
dataset).

The sum of the mean values of DesT1, DesT2,
MatchT, InlierT is the mean total time (TotalNormT) of
the normalization of one image pair for the dataset
SYTOSS NURE pngPairs100 (Fig.8). Clarifying the
fact that TotalNormT was estimated for a certain dataset
is important because TotalNormT directly depends on
the size of the images, the share of total scenes in pairs
(overlap), and the type of scenes.

Below, we can see the same TotalNormT diagram
for the case of using the symmetric method at the 2nd
step of normalization (match search). This figure shows
that the mean time for normalization almost doubles, as
it was above mentioned in paragraph 2.

Total normalization time with NNDR method
for one image pair (sec)

AKAZE
KAZE
BRISK
ORB1000
ORB
SURF64
SURF128
SIFT
! . NN RSN EEE
sec
0 0,1 ,2 0,3 ,4 ,5 0,6
# DesT1 # DesT2 MatchT o InlierT

Fig. 8. Total normalization time costs of one image pair
with using the NNDR method for a match search
(averaged for the whole dataset)

Total normalization time with symmetric
method for one image pair (sec)

AKAZE
KAZE
BRISK
ORB1000
ORB
SURF64
SURF128
SIFT

0 0,1 0,2 0,3 0,4 0,5
#DesT1 #DesT2 MatchT ®inlierT

0:6 sec

Fig. 9. Total normalization time costs of one image pair
with using the symmetric method for a match search
(averaged for the whole dataset)

Summing up the time costs, the descriptors by the
total normalization time TotalNormT can be ranked as
follows (from faster to slower):

ORB1000 < AKAZE << BRISK, SURF64 <

< SIFT < SURF128 << KAZE << ORB.

5.4. The normalization quality comparison
based on expert assessments. All 800 experiments (for
each pair of images 8 descriptors, 100 pairs) were

evaluated by experts (“0” —“4”). If normalization could
not occur due to insufficient matches, the experiment
was given the value “-1” [15]. The expert rate revealed
that 68% of experiments for this dataset scored “4” and
“3” (good and excellent), 7% were unsuccessful,
scoring “-1” and “0” (Fig.10).

Distribution of expert rate values
for whole dataset

2% 5%

m absent("-1")

m failed ("0")

m insufficient ("1")
m satisfactory ("2")
mgood ("3")

m excellent ("4")

Fig. 10. Distribution of expert rate values

Fig. 11 and Table 3 illustrate how these rates were
distributed among the descriptors, where it can be seen
that SIFT is a clear leader. This descriptor has the
biggest number of the highest rate “4”, the least number
of the rate ““0”, the rate “-1” is absent at all.

Distribution of expert rate values by
the descriptors for SYTOSS_NURE_pngPairs100

AKAZE
KAZE
BRISK
ORB1000
ORB
SURF64
SURF128
SIFT

0 20 0 60 80 100
mabsent("-1")  mfailed ("0") m insufficient ("1")

m satisfactory ("2") mgood ("3") m excellent ("4")

Fig. 11. Distribution of expert rate values by the descriptors
for the SYTOSS NURE pngPairs100 dataset
(for each descriptor, it is calculated the quantity
of the same values of the expert rate (ER) for each value
(“07-"4”), as well as the quantity of cases
where the normalization did not occur (“-17)

Table 3 — Quantity of expert rates with the same values and
mean exert rates for each descriptor (800 pairs)

. Mean
Quantity of the same ER values

Descriptor ER

-1 0 1 2 3 4
SIFT 0 2 1 10 19 68 3,5
SURF128 1 5 5 15 26 48 3,04
SURF64 0 4 6 14 32 44 3,06
ORB 0 3 6 21 27 43 3,01
ORB1000 0 9 19 21 26 25 2,39
BRISK 1 5 7 15 25 47 2,99
KAZE 7 5 2 28 25 33 2,57
AKAZE 6 6 9 24 30 25 2,41
Total quantity 15 39| 55| 148 | 210 | 333
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Fig. 12, a and Table 3 show the arithmetic mean
(MeanER) of expert rate values for each descriptor,
where one can notice that the highest mean value 3.5
belongs to SIFT, the descriptors SURF64, SURF128,
ORB, BRISK follow. ORB1000 and AKAZE have the
lowest mean ones.

For SIFT only, the median of the expert rates
has a value 4. If the median is calculated without the
negative points “-1” and “0”, then the value 4 has
SURF128 [15].

Based on the mean expert assessment and its
median, the descriptors can be arranged in the following
order (from a higher expert rate to lower):

SIFT >> SUFR128, SURF64, ORB, BRISK >

> KAZE > AKAZE > ORB1000.

Thus, according to the experts, the SIFT descriptor
has a definite advantage in the normalization quality,
but it has the middle position by time consuming
(Fig. 8).

This paper didn’t have such a purpose to research
descriptors under significant lighting changes, but the
experiments with 3 pairs of Day Night pngPairs3
dataset have shown that SIFT presents the best result
(all pairs have an expert rate “4”), and KAZE has the
lowest mean expert rate (Fig. 12, b, 13, 14).

However, this issue requires additional research
for more images. The results of the experiments can be
found here [15].

Mean expert rate for Mean expert rate for
SYTOSS_NURE Day_Night
4 - 4
3 3
2 2 ||
0~ o MR o lI
CRBEEZYY D3P HUYY
mE&O._.%\_,ﬁ M&OmEgﬁ
S A & = AS C=¥Z
] o 7]
a b

Fig. 12. Arithmetic mean of expert rate values (AvgER):
a —mean expert rate for SYTOSS NURE pngPairs100;
b — mean expert rate for Day Night pngPairs3

Distribution of expert rate values by
the descriptors for Day_Night dataset
AKAZE | ' ]
KAZE
BRISK
ORB1000
ORB
SURF64
SURF128
SIFT

m absent("-1") m failed ("0") m insufficient ("1")

m satisfactory ("2") mgood ("3") m excellent ("4")

Fig. 13. Distribution of expert rate values
by the descriptors for Day Night pngPairs3

Fig. 14. Result of normalization
for the image pair from Fig. 4
(Day Night pngPairs3)

5.5. Analysis of normalization results for scenes
of different types. The paper considers how the
descriptors process images of different sceneries
(Building, Picture outside, Picture_inside,
Texture_artificial, Texture nature).

As the limited volume of the printed version does
not allow to illustrate all the obtained regularities, in this
article, only some of them appear below:

— all algorithms are characterized by a significant
increase in number of found key points NP for natural
textures. This increase is particularly typical for ORB;

—ORB, BRISK descriptors have a fairly
consistently high mean Precision for all sets (from 0.84
to 0.87 for ORB, from 0.85 to 0.89 for BRISK). For
other algorithms, the mean Precision varies significantly
from set to set. For example, the SIFT algorithm shows
the highest Precision value of 0.93 for artificial textures.
In general, the scatter of mean Precision for different
sets is 0.09;

— except SIFT, all descriptors showed the worst
RecallO1 for artificial textures, SIFT has the highest
RecallO1 for all sets;

—the time indicator AvgDesT for detection and
description of one key point for the descriptors ORB,
BRISK and ORBI100 is significantly less than for the
others and does not depend on the type of scene. For the
other algorithms, AvgDesT values differ depending on
scene types.

— the ORB algorithm proved to be very slow
working with natural textures, that affected the
estimation of time cost TotalNormT with this algorithm
for the whole dataset (Fig.8,9);

— the lowest mean expert rate was defined for
textures, at that natural texture is processed worse with
SIFT, SUFR128, SURF64, ORB, ORB1000, BRISK
descriptors, and artificial texture is worse with KAZE,
AKAZE;

— there are 13 cases out of 15 ones for artificial
texture when normalization was not possible
(ER ="-17), where 11 cases occurred under KAZE and
AKAZE algorithms. The natural texture had the lowest
quantity of the rate “4”. SIFT descriptor shows the
highest expert rates for each set.

All results of experiments for different scene type
sets can be found in [15]. In general, we conclude that
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normalization with the research method gives the worst
results for natural and artificial textures.

This can be explained by the fact that natural
textures often have distortions partly beyond projective
transformations, and the artificial textures have more
quantity of similar neighborhoods for not corresponding
key points. However, to confirm the identified
regularities, it is necessary to increase the number of
image pairs from 20 to at least 100 pairs for each scene
type.

5.6. Final conclusions on experiments. For the
convenience of comparative descriptor analysis and
making final conclusions on the work was constructed:

1) the bubble diagram (Fig.15) which clearly
illustrates the number of values of the best expert rate
“4” and the time costs for all descriptors, where the
point size indicates the number of failed normalizations
(“-1” and “0”);

Time costs VS expert rates of quality
0,4
o 0,35 | ® o SIFT
a 03 | ] ® SURF128
w 0,25 | ©® SURF64
2 @
o 02 o e ORB
¥ L8
E 0,15 | ® ORB1000
= 01 | ® BRISK
0,05 | I KAZE
o LW AKAZE
15 35 55 -
Percentage of the best expert rates of quality
(ER="4"), %

Fig. 15. Time costs VS expert rates of quality
(the number of values “4” is on the abscissa axis,
the time costs value is on the ordinate axis,
the point size is the number of failed normalizations
(“~1” and “0”), for instance, point size is 2 for SIFT
and 12 for KAZE, AKAZE )

2) the rating diagram (Fig.16), which was made by
converting values for each indicator into the 8-point
rating scale (see paragraph 4.5). This diagram obviously
presents the rating of descriptors for the considered
indicators by the groups:

— quantitative estimates NP, NMO, NI;

— relative values Precision and Recall,

— time costs estimates DesT, MatchT,
TotalNormT (InlierT is not given because its values are
too small and their effect on time costs, in general, is
not significant);

— relative quality assessments based on such
expert rates: ER="4" (the winner), ER="-1" (absent),
ER="07 (failed) and the mean expert rate MeanER.

The diagrams 15, 16 allow to make the following
conclusions:

— the descriptors AKAZE and ORB1000 have the
best time costs but the least number of expert rate “4”
and a high level of failed normalizations;

—the descriptors BRISK, SURFo64, SIFT,
SURF128 have comparable time costs and occupy an
average position in time costs relative to the other
descriptors, but SIFT significantly exceeds BRISK,
SURF64, SURF128 in quality (a maximum number of
the expert rate “4” and a minimum number of
normalization failures).

— for the SIFT algorithm, the ratio of the number
of found matches to the detected points is higher than in
other algorithms, i.e., SIFT detects key points and gives
them a description in the best way, that makes it the
winner by normalization quality among the compared
algorithms. As for SURF128, SURF64, they have a
similar number of key points with the SIFT algorithm,
but a share of found points, which are useful for
normalization, is the lowest. The normalization quality
with SURF128, SURF64 is similar, like with the BRISK
descriptor.

— the KAZE descriptor normalizes 1/3 longer than
algorithms BRISK, SURF64, SIFT, SURF128 (but
ORB does it even longer), with a maximum number of
normalization failures (maximum number of the rate
“-17). The total number of rates “-1” and “0” is very
similar for KAZE, AKAZE;

— the ORB descriptor has the most essential time
costs, and the normalization quality is comparable to
SURF64, SURF128, BRISK. The great ORB time costs
are caused by the significant expenses on finding
matches for a large number of points (the ORB
algorithm finds the maximum number of key points, and
only 10% of them are used for normalization).

Converting all indicator values to an 8-point rating scale

ENP
ENMO

SURF128 SURF64

ORB

ORB1000

ENI

M Precision
ORecallO1

MW DesT

O MatchT

B TotalNormT
M ER=4 (winner)
DER<1

B MeanER

BRISK KAZE AKAZE

Fig. 16. Converting all indicator values
to an 8-point rating scale (point 8 is the highest mark).
Each value was assigned to one of the marks from 1 to §,
depending on which interval it got into (paragraph 4.5)
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Conclusions

Thus, in this paper, the image normalization
method implementation based on the analysis of the key
points is considered in detail. Comparative estimation of
the quality and time costs of the full-cycle descriptors
SIFT, SURF128, SURF64, BRISK, ORB, ORB (1000),
KAZE, AKAZE was conducted.

The following conclusions as to the result of the
research:

— all descriptors can be used for normalization;

— the SIFT algorithm presented the best quality
(even at an extreme change of lighting), however, SIFT
time costs occupy an average position, along with
SURF, BRISK which are significantly inferior to it by
quality;

— the fastest algorithms were ORBI1000 and
AKAZE, the normalization quality with them is lower
than with other algorithms;

— the KAZE algorithm is slower (only ORB is even
more slower) and inferior to SIFT, SURF, BRISK, ORB
in quality;

— the ORB descriptor has the most substantial time
costs and averaged quality comparable to SURF and
BRISK;

— SURF64 and SURFI128 descriptors showed
comparable quality and time costs, SURF64 is faster,
SURF128 has better quality, but these differences are
insignificant;

— the worst results were obtained for texture
images;

— the symmetric method usage for searching
matches at the 2nd step doubles the time costs of the
normalization process in general.

Therefore, it is recommended to use the SIFT
descriptor for general tasks where it is necessary to
process images with the scenes, which are similar to
ones of the dataset SYTOSS NURE pngPairs100, and
the time costs requirement is not critical. If time costs
are paramount and quality can be neglected within
reasonable limits, it is better to use binary descriptors
ORB1000 or AKAZE.

Findings on the paper are based on the image
normalization of the SYTOSS NURE pngPairs100
dataset, which contains image scenes of different types,
40% of which are images of natural and artificial
textures.

As the normalization of images of this type
showed the worst results, the conclusions for the other
sets may differ slightly.

In this work, the expert rates were applied to assess
the normalization quality because a person can match
images after normalization in the best way, but this
approach to estimation is very time-costuming and is
not devoid of subjectivity.

So, further research should focus on the
development of an automatic criterion for assessing
normalization quality and research of normalization
result stability under various distortions: geometric
transformation,  illumination and degree of
compression.
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JocaigkeHHs MeToxy HopMaJiizamii 300paskeHnb Ha 6a3i JecKpUNTOpPiB
Ta nopiBHsaIbHUI anani3 neckpunrtopis SURF, SIFT, BRISK, ORB, KAZE, AKAZE

0. B. SIkosnesa, K. I'. HikonaeBa

AnoTtanis. IIpenmerom mocnmipkeHs € HOpMallizamis 300pakeHb Ha OCHOBI aHalli3y XapakTepHHX TOYOK. Meroro €
PO3po0IIeHHs MaTeMaTHYHUX MoJiesel Ta X nporpamMHa peanizauis A1 HOpMali3alii reoMeTpUYHMX HepeTBOPEHb 300pakeHb Ha
ocuoBi anamizy neckpunropis SIFT, SURF, ORB, BRISK, KAZE, AKAZE; 3actocyBaHHs wLi€i Monelni IUIsl TPOBEICHHS
MOPIBHSUTBHOI'O aHAJIi3y JECKPHUIITOPIB Ha OCHOBI EKCHEPTHMX OIHOK SKOCTI HOpMasli3amii, YacOBHUX BHTpAT Ta IHIIMX
MOKA3HUKIB; ()OPMYBaHHs Ta BUKOPHCTaHHS B €KCIIEPUMEHTaxX BJIACHOro aataceTy 31 100 peanbHux nap 300paxkeHsb, sKi MiCTATb
CLeHM II'STH THIB: OYAiBJII Ta MICbKi IeH3aXki, IUIOCKI 300pakeHHs, 110 3YCTPIUarOThCS HA BYIHIL, IUIOCKI 300paXkeHHS
BHYTPILIIHBOI'O iHTEP €PY, NPUPOJIHI Ta INTYYHI TEKCTYPH; BUCHOBKU BiJJHOCHO BUKOPUCTAHHS PO3IJISHYTUX JIECKPHIITOPIB Is
BHUpIIIEHHS 3a/a4 HopMauizalii. 3acrocoByBanumu metonamu €: neckpunropu SIFT, SURF, ORB, BRISK, KAZE, AKAZE ns
onucy xapakrepHux To4ok, Nearest Neighbor Distance Ratio merox abo cumeTpuyHHMi MeTOJ Ul IOLIYKY BiANOBIJHUX Iap
XapaKTepHUX TOUYOK 3 Pi3HUX 300paxkeHb, RANSAC meron a1 BuzajeHHs XMOHMX BIATIOBIIHOCTEH Ta OTPHMMAHHS IapaMeTpiB
Mmarpuui romorpadii, Mipu nonidHocTi, nporpamHe MozaesoBaHHA. OTpUMaHi pe3ynbTaTH: Pe3yJbTaTH EKCIEPUMEHTIB LIO0J0
HopMmaizanii neckpuntopamu SIFT, SURF, ORB, BRISK, KAZE, AKAZE uia 100 peansHux nap 300paxkeHs (HOpMati3oBaHi
300paxxeHHs, 1X NEepeKpUTTs, KUIbKICHI OLIHKM JECKpUNTOpiB, precision and recall moka3HuKM, 4acoBi BUTpATH, €KCIEPTHI
OLIHKH SIKOCTi, KOHBEPTallisl BCiX 3Ha4€Hb [OKA3HUKIB B §-0alIbHy PEHTHHIOBY IIKally, MiJICyMKOBI JliarpaMy Ta BUCHOBKH IIPO
nepeBarn Ta cjaabKi MICIll JECKPHIITOPIB, IO MOPiBHIOBAINCS; PEKOMEHIALIl BIZHOCHO peaii3alii MeTomy HopMaizamii y
KOHKPETHHX BHIIAJIKax.

KawuoBi ciaoBa: Hopmaiizalis TeOMETpUYHUX IepeTBopeHb; nerekrop; aeckpunrtop; SURF; SIFT; BRISK; ORB;
KAZE; AKAZE; metron RANSAC; meton k-nHaitommkuanx cycini; Nearest Neighbor Distance Ratio; 6i6miorexa OpenCV.

Meron HOpMaIM3aNKuU M300pakeHNii Ha 6a3e NJeCKPUNTOPOB
u cpaBHHTebHBII anamm3 geckpunropos SURF, SIFT, BRISK, ORB, KAZE, AKAZE

E. B. fxosnesa, E. I'. Hukonaesa

AnnoTtanusa. [IpeqveToM HccienoBaHU SBISETCS HOpMAlM3alMs H300paKEHUH HA OCHOBE aHAJIHM3a XapaKTePHBIX
toyek. llenbio sBisieTcss pa3paboTka MaTeMaTHYeCKHMX MoJelNedl M MX IporpaMMHas peanu3alys Uil HOpMan3aluu
TreOMETPHYECKUX IpeoOpa3oBaHmii n300pakeHuid Ha ocHoBe aHanm3a neckpunropoB SIFT, SURF, ORB, BRISK, KAZE,
AKAZE; npumeHeHue IaHHOM MOJENU Ul IPOBEICHUS CPABHUTENIBHOIO aHajlu3a JECKPUIITOPOB HAa OCHOBE 3KCIEPTHBIX
OLICHOK KayecTBa HOPMaJIM3allMM, BPEMEHHBIX 3aTpaT W JpYrux IIOKa3arelield; (opMHpOBaHME U WCHOJIB30BAaHUE B
JKCIIeprMeHTax coOcTBeHHOro jaatacera w3 100 peanbHBIX Nap M300paKeHUH, COAEpIKAIIMX CHEHBI IATH THUIIOB: 3[aHUSI U
TOPOZICKUE TMei3a)XH, IUIOCKHE BCTPEYAIOIIMecs Ha YIHUIEe H300pakKeHWs, IUIOCKHE H300pa)kKeHWs BHYTPEHHEro HHTephepa,
IIPUPOZIHBIE U UCKYCCTBEHHBIE TEKCTYPBI; BBIBOBI OTHOCUTEIBHO HCIIOIb30BAHHS PACCMOTPEHHBIX AECKPUIITOPOB ISl PELICHHS
3a1ad HopManu3auuu. IIpumensembiMu mertonamu sisttorest: geckpunropsl SIFT, SURF, ORB, BRISK, KAZE, AKAZE s
OIMCaHMsl XapakTepHbIX Todek, Merox Nearest Neighbor Distance Ratio nmnmm cuMMeTpu4HBIH MeTOn Ui IOHMCKa
COOTBETCTBYIOIINX IAp XapaKTepHBIX TOYEK Ha pa3HBIX n300paxeHwsx, MeToq RANSAC s ynaneHus JIOKHBIX COOTBETCTBHI
U TIOJIyYeHHUs TIapaMeTpoB MAaTPHIBI roMorpaduu, Mepbl CXOICTBa, IPOrpaMMHOE MojenupoBaHre. [loimydeHHbIe pe3ynbTaThl:
pe3ynbTaThl 3kcnepuMenToB 1o Hopmanusanuu neckpunropamu SIFT, SURF, ORB, BRISK, KAZE, AKAZE s 100 peanbHbIX
nap u300pakeHuil (HopMaIn30BaHHbIE M300paKeHUS, UX MEPEKPBITHS, KOJIMYESCTBEHHbIE OLIEHKHM IEeCKPHUITOPOB, precision and
recall moxaszarteny, BpeMEHHBIE 3aTpaThl, JKCIIEPTHHIC OLEHKH KauyecTBa, KOHBEpTAlWs BCEX 3HAUCHHWIl IokasaTenedl B 8-
OaJUIPHYI0 PEUTHHTOBYIO IIKaly, WUTOrOBBIE IHArpaMMbl M BBIBOJBI O IPEHMYINECTBaX M CIAOBIX MeCTa CPaBHHBAEMBIX
JIECKpUITOPOB; PEKOMEHAALMHY OTHOCUTEIBHO Pealu3alliy METOo/1a HOpMalu3alui B KOHKPETHBIX CIydyasx.

KaoueBblie ci0Ba: HOpMaIM3aIMs T€OMETPUIECKHX ITpeodpa3oBanuid; netekrop; neckpunrop; SURF; SIFT; BRISK;
ORB; KAZE; AKAZE; meron RANSAC; merox k-Ommxkaiimmx coceneit; Nearest Neighbor Distance Ratio; 6ubnmorexa
OpenCV.
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