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AND COMPARATIVE ANALYSIS OF SURF, SIFT, BRISK,  

ORB, KAZE, AKAZE DESCRIPTORS 
 
Abstract.  The subject of research is image normalization based on key points analysis. The purpose is development of 
mathematical models and their software implementation for normalization of image geometric transformations based on the 
analysis of SIFT, SURF, ORB, BRISK, KAZE, AKAZE descriptors; the model application for comparative analysis of 
descriptors based on expert assessments of normalization quality, time costs and other indicators; construction and usage in 
experiments the own dataset with 100 real image pairs which contains scenes of five types: buildings, plane images outside, 
plane images inside, natural and artificial textures; making conclusions about the performance of the considered descriptors 
to solve the normalization problem. Such methods are applied: SIFT, SURF, ORB, BRISK, KAZE, AKAZE descriptors for 
describing key points, the Nearest Neighbor Distance Ratio method or symmetric method for search of corresponding pairs 
of key points from different images, the RANSAC method for rejecting false correspondences and obtaining a homography 
matrix, similarity measures, software modeling. The results obtained: experimental normalization results by SIFT, SURF, 
ORB, BRISK, KAZE, AKAZE descriptors for 100 real pairs of own dataset (normalized images, their overlaps, 
quantitative descriptor evaluation, precision and recall estimation, time costs estimation, expert quality assessment, 
conversion of all indicator values to an 8-point rating scale); summary diagrams and conclusions about advantages and 
weaknesses of the compared descriptors; recommendations about the most-suitable-algorithm selection for solving 
normalization problem in specific cases. 
Keywords:  normalization of geometric transformation; detector; descriptor; SURF; SIFT; BRISK; ORB; KAZE; 
AKAZE; RANSAC method; method of k-nearest neighbors; Nearest Neighbor Distance Ratio method; OpenCV library. 

 
Introduction 

Review of the current state of solving computer 
vision problems. Today, computer vision is 
experiencing a period of significant progress in problem 
solving, on which researchers have been working for 
decades. Meaningful advances have been made in 
detection, segmentation, classification of objects, image 
search by pattern, image generation, and other tasks.  

For many years, most approaches of image 
analysis have been based on transition from an image to 
a feature space, which contains basic information about 
the whole image or its characteristics, and has a denser 
representation than the image. After the transition, such 
features are compared with the appropriate method, and 
then a decision is made according to the problem which 
is being solved. In addition to being informative and 
having reduced dimension, the obtained feature should 
be as insensitive as possible, i.e., invariant to image 
geometric transformations, changes in lighting, noise, 
local occlusion, for example, when objects are partially 
overlapped, or an object part extends beyond an image.  

There isn’t any universal way to describe images 
with a feature set. The choice of feature space and their 
processing method depends on a specific problem. The 
weakness of the classical feature approaches is the need 
for complex configuration, where it is necessary to set 
various parameters on the basis of heuristic information. 
Values of such parameters affect the final result 
significantly [1, 2]. 

In recent years, neural networks have provided a 
significant breakthrough in computer vision. In 2012, 
the AlexNet neural network took part in the annual 
ImageNet competition and showed the best results in 

solving the object classification problem with a number 
of errors 15.3% against 26.2% of the runner-up [3]. 
Then, in 2019, the classification quality with neural 
networks equaled human capabilities. The combination 
of achievements of classical analytical feature approach 
with a neural network one has a great perspective. 

But even now, there are a lot of tasks where the 
classical feature approach is necessary. Such tasks, as 
cartography, stitching of panoramic images etc., depend 
on solving the problem of normalization (compensation) 
of present geometric transformations. 

Normalization problem and approaches to solve 
it. In the work, the normalization means the process of 
compensation of geometric transformations that 
distinguish one image from another. This matter has 
been investigated for a long time. The fundamental 
work [2] about normalization proposes two main 
approaches: tracking and parametric and also considers 
some methods for each of these approaches.  

The tracking approach implies the gradual 
compensation of geometric transformations with many 
steps. The processed image is compared with the pattern 
at each step, and then it undergoes a tiny geometric 
transformation that compensates only a part of the 
whole geometric transformation, bringing the processed 
image closer to the pattern. As a result of all steps, the 
processed image will become a pattern, and parameters 
of a general geometric transformation will be defined. 
This approach is applied to tracking and targeting tasks.  

The parametric approach is aimed to determine 
parameters of an entire geometric transformation at 
once. Then the found transformation is compensated, 
and the processed image turns into the pattern. This 
approach is used more widely.  
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In [2], for both approaches, it is offered to put an 
integrated method of construction of functionals which 
are based on the moments of a different order, but only 
cases with simple geometrical transformations are 
considered. Also, for all integrated methods, a 
significant problem is the background that can be 
partially or completely changed. In [4,5], to solve the 
problem of normalization in the conditions of complex 
geometric transformations and local occlusions, it is 
proposed to use the method of one-dimensional 
normalizations and decomposition of complex groups of 
transformations into compositions of simple ones. 
However, such methods solve the problem only 
partially. This article is devoted to analyzing the 
normalization on the basis of the descriptors of image 
key points. 

Construction of image features based on 
descriptors. In the classical approach, a solution of a 
big amount of tasks is based on the key points definition 
and description of their neighborhoods by a feature 
vector with further processing of obtained vectors. So, 
there is a transition from an image to a space of key 
points feature vectors.  

An algorithm that gets key points is a detector, and 
an algorithm that gets a description of the found points 
is called a descriptor. Also, a descriptor means a feature 
vector of a key point. 

Over a long period of existence of computer vision 
tasks, a significant number of algorithms have been 
developed to detect and describe key points, which 
differ in varying degrees of invariance to geometric 
transformations, changes in lighting, angles of view, and 
time costs values. The implementation of most of these 
algorithms can be seen in popular software libraries. For 
instance, the open library OpenCV contains SURF, 
SIFT, ORB, BRISK, KAZE, AKAZE, LATCH, VGG, 
LUCID, DAISY, FREAK and other descriptors. 

Statement of the research task. This work is 
dedicated to: 

– research of the parametric normalization 
approach, where key points and their descriptors are 
used to find out the normalization parameters; 

– comparing the quality and time costs of the 
normalization process based on different descriptors. 
For comparison were selected the full-cycle descriptors, 
such as SURF128, SURF64, SIFT, BRISK, ORB, 
ORB1000, KAZE, AKAZE. 

In this work, it was necessary: 
– to consider each step of normalization in detail; 
– to develop a mathematical and software model 

for further experiments on the photo image pairs 
normalization with the different descriptors;  

– to create the own dataset for experiments;  
– to draw conclusions in the comparative aspect 

about the quality and time costs of normalization basing 
on the considered descriptors. 

Main material of the research 
1. Normalization of geometrical transformations 

based on the descriptors. The normalization method 
based on descriptors uses the basic property of 
projective transformation  
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where 11 12 13 21 22 23 31 32 33, , , , , , , ,h h h h h h h h h  – 
parameters of projective transformation; ( , )A AA x y , 
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But in practice, the corresponding points on 1B  
and 2B  images are unknown. Descriptors that detect 
and describe the key points can be used to solve the 
problem of establishing the corresponding points. Key 
points will be found with some inaccuracy because 
detectors and descriptors are sensitive to significant 
geometric and lighting transformations. The search of 
corresponding points that is defined based on the 
descriptor similarity will also make false pairs.  

Therefore, in practice, it is desirable to use more 
than 4 pairs of found corresponding points to determine 
the geometric transformation parameters more 
accurately. 

The normalization algorithm used in the work 
consists of the following steps: 

1) key points search and their description with 
feature vectors, i.e., the descriptors, for 1B  and 2B  
images; 

2) definition of the correspondence between the 
key points on 1B  and 2B  images; 
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3) determination of geometric transformation 
parameters, which distinguishes 2B  image from 1B  
image;  

4) 2B  image normalization to 1B  image (direct 
normalization), or 1B  image normalization to 2B  image 
(inverse normalization). 

Further, let’s consider each step in detail. 
Step1. To define key points and their description, 

the work considers full-cycle algorithms (detector-
descriptor algorithms), which perform both key points 
detection and description. Based on the multi-source 
analysis, the detector-descriptor algorithms SURF128, 
SURF64, SIFT, BRISK, ORB, ORB (1000), KAZE, 
AKAZE were chosen as the most perspective and 
interesting for normalization. Table 1 shows the brief 
information about these algorithms. The principles of 
constructing descriptors according to these algorithms 
can be found at the links [8–13]. 

However, a large number of existing algorithms 
and the lack or inconsistency of information about their 
comparison, recommendations for their use in different 
conditions make it difficult to understand strengths and 
weaknesses of certain descriptors and to choose the best 
for solving own task. Thus, there is a need for further 
descriptor research in the comparative aspect and 
obtainment of sound recommendations for their usage. 

Table 1 – Brief information about the considered full-cycle 
descriptors (detector-descriptor algorithms) 

Name of full cycle descriptors,  
year, source, type of license 

Detector: type; 
Descriptor: type, size 

SIFT (Scale Invariant Feature 
Trans-form), 2004, [8],  
non-commercial use 

detector: blob; 
descriptor:numeric, 
128 

SURF (Speeded Up Robust 
Features) 2008, [9], 
non-commercial use 

detector: blob; 
descriptor: numeric, 
128 or 64  

ORB (Oriented FAST and Rotated 
BRIEF)/ORB1000/ 2011, [10],  
free use 

detector: corner; 
descriptor: binary,32 

BRISK (Binary Robust Invariant 
Scalable Keypoints) 2011, [11],  
free use 

detector: corner; 
descriptor: binary,64 

KAZE 2012, [12],  
free use 

detector: blob; 
descriptor:numeric,128 

A-KAZE (Accelerated –KAZE) 
2013, [13], free use 

detector: blob; 
descriptor: binary, 61 

 
Mentioned below, the term “descriptor” is 

employed addressing detector-descriptor algorithms, 
excluding some cases where it is necessary to discuss 
the detector part of the full algorithm. The term 
“descriptor” is also used when it refers directly to a key 
point feature vector that was received as the result of 
applying the algorithm. 

So, one of the detector-descriptor algorithms 
constructs the sets  

   1 1 1, ,D M x y d  and    2 2 2, ,D M p q d  

for images 1B  and 2B  respectively, where  1 ,M x y  – 
a key point, 1d  –  a descriptor (vector with features 

1v
с ) for 1B  image;  2 ,M p q  – a key point, 2d  – a 

descriptor (vector with features 2v
с ) for 2B  image; 

1v V  , V – the dimension of the feature vector, 
which is determined by the certain descriptor method. 

Step 2. To establish the matches between key 
points, one should compare their descriptor vectors. As 
the result of matching the set of corresponding pairs  
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is formed. To search for corresponding pairs, the 
Nearest Neighbor Distance Ratio (NNDR) method 
(modification of k-nearest neighbors, k=2) was used, 
and the symmetric method was covered in order to 
analyze some estimates of normalization.   

The NNDR method consists of finding for each 
point  1 ,iM x y  and its descriptor 1id  on the image 1B  
two most similar descriptors 2kd  and 2td  on the image 

2B . To measure the similarity of numerical descriptors 
was applied Manhattan distance (L1 norm) 
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which becomes Hamming distance for binary 
descriptors. 
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descriptor 1id  of 1B  image, if the inequality  
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is satisfied, where   1 2,i kd d  <  1 2,i td d ;  – 
threshold ( was equal to 0.75 in the experiments), and 
a pair of points 1 2 )( ,i jM  M was put into the set T .  

After processing all key points of 1B  image, the 
same actions were performed for 2B  image key points 
which weren’t determined as the corresponding pair for 
the image 1B .  

The found corresponding pairs for 2B  image were 
added to the set  T .  

In this approach, the result set T  depends on the 
image which is processed first. Namely, if at first 

2B  image key points are treated and at second  1B  
image key points are done, the set T will be different. 

In practice, the symmetric approach for finding 
corresponding pairs has also been researched, where the 
set T consists only of such pairs of points ( 1 2, i jM M ) 
for which the similarity measure is the least  
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The symmetrical approach does not depend on the 
order of 1B , 2B  image processing. 
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The results of the research have shown that the use 
of the NNDR method or the symmetric approach at the 
step of matching gives a similar accuracy of the final 
normalization, but the symmetric method has higher 
time costs, almost twice (Fig. 9). The reason for this is 
the fact that the symmetric approach finds much more 
matches, but among the found matches, the false match 
(outlier) share is significantly larger than in the NNDR 
method (Fig. 1,2). This is also critical in the conditions 
of a small number of obtained key points. So, the main 
attention was paid to the NNDR method, and the 
symmetric method was considered only in some cases.   

  

 
Fig. 1. The corresponding pairs of key points were obtained 

with the NNDR method based on the SIFT descriptor  
(96 matches) 

 

 
Fig. 2. The corresponding pairs of key points were got with 

the symmetric method based on the SIFT descriptor  
(217 matches) 

 
Step 3. If there is a set T of corresponding pairs of 

points, the geometric transformation parameters can be 
got on the basis of the least squares method. But the set 
T , besides correct matches (inliers), may contain false 
correspondences (outliers), that is confirmed by 
practical results (Fig. 1,2).  

Such outliers would significantly affect a 
geometric transformation model made with the least 
squares method, and this model would not be suitable 
for normalization.  

Therefore, the RANSAC method was applied in 
this work. It is designed to look for the best 
homography matrix without taking outliers into 
consideration. To be more precise, the accelerated 

implementation of this method supported by the 
OpenCV library, which was proposed in [14], was used. 

Thereby, the applied in this paper algorithm for 
search of the geometrical transformation model consists 
of two stages: 

Stage І. Search for the best initial model without 
considering outliers with the RANSAC method using a 
geometric test. The RANSAC input is supplied with the 
set T  of corresponding pairs of points for 1B  and 2B  
images (constructed with the NNDR or the symmetric 
method); the number of iterations N ; the threshold  for 
estimation of match error (discarding outliers). 

Repeat N times (in this work 2000N  ), on each 
k-th iteration: 

a) select randomly 4 corresponding pairs of points 
1 2( , )i jM M  from the set T . 

b) check the selected subset for compliance with 
the geometric test [14].  For this, every 3 pairs of points 
from the subset formed in a) (every 3 pairs from 4 
selected ones) are examined for the coincidence of the 
traversal sequence on 1B  and 2B respectively. 

The time for implementation of the entire 
RANSAC algorithm can be significantly reduced with 
the help of b), because if the points selected in a) do not 
fit, then c), d), e) are omitted, and we return to a); 
otherwise we move to c). 

c) calculate the homography matrix kH for the 
selected 4 corresponding pairs of points.  

d) define quality kU  of the model kH , namely, 
how accurately the matrix kH  transforms all 
corresponding pairs of points from the set T . Model 
quality kU  is calculated as the number of cases for 
which the match error e  is less than the threshold  

 1 2' ,i je M M  < ,                     (1) 

where 1 1'  i k iM H M  – a reflection of point 1iM  of the 
image 1B  obtained with the homography kH ; 

 1 2,i jM M T – the corresponding pair;  – threshold  

(equal 3 in the experiments);  ,e – the match error. For 
example, the error can be computed as Euclidean 
distance between a key point on the image 2B  and 
reflection of the corresponding key point on the image 

1B  or as the total error of direct transformation kH  

(direct error) and inverse one 1
kH   (transfer error). 

Pairs of points corresponding, for which (1) is true, are 
considered to be correct matches (inliers), others – false 
matches (outliers). 

e) find the model  kH that has the best quality kU  

(  )k maxU U , store it as *
kH H  and construct the set 

*T  by removing from the set T  outliers. 
At the end of the cycle, we obtain the best model 

*H  and the inlier set *T . 
Stage ІІ. Refinement of the initial model for the 

inlier set *T  with the method of least squares. In this 
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stage, it is determined the homography matrix bestH , 
for which the sum of deviations between the key points 
from the set *T  on the image 2B  and the reflection of 
the matching key points on the image 1B  is minimum: 

2
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where 11 12 13 21 22 23 31 32 33, , , , , , , ,h h h h h h h h h  – 

parameters of the model bestH , 1 1,
i i

x y – the coordinate 

of  point 1 1i
M B  , 2 2,j jx y  – the coordinate of point 

2 2 ,jM B   1 2, *i jM M T . 

Step 4. The direct normalization is based on the 
transformation of 1B  with the matrix bestH . The result 

of normalization is the normalized image 1
HВ . 

Relatively, the inverse normalization is the 
transformation of 2B  with the inverse matrix 

  1bestH


. 
2. Software implementation of the 

normalization method based on SIFT, SURF128, 
SURF64, BRISK, ORB, ORB (1000), KAZE, 
AKAZE descriptors. All experiments were performed 
using Java language and OpenCV library. OpenCV 
methods, shown in Table 2, were used to obtain 
descriptors. 

 
Table 2 – OpenCV methods for obtaining descriptors 

Algorithm 
name 

Elemen
t type of 
vector 

OpenCV object 

SIFT CV_32F SIFT sift = SIFT.create(); 
SURF(128D) CV_32F SURF surf128 = 

SURF.create(); 
surf128.setExtended(true); 

SURF (64D) CV_32F SURF surf64 = 
SURF.create(); 
surf128.setExtended(false); 

ORB CV_8U ORB orb = ORB.create(); 
orb.setMaxFeatures(100000); 

ORB (1000) CV_8U ORB orb1000 = 
ORB.create(); 
orb1000.setMaxFeatures(1000); 

KAZE CV_32F KAZE kaze = KAZE.create(); 
kaze.setNOctaveLayers(3); 
kaze.setExtended(true); 

AKAZE CV_8U AKAZE akaze = 
AKAZE.create(); 
akaze.setNOctaveLayers(3); 

BRISK CV_8U BRISK brisk = 
BRISK.create(); 

 
OpenCV class BFMatcher(int normType, bool 

crossCheck) was used to find matches, where 

crossCheck = false – for the k-nearest neighbor method, 
true – for the symmetric approach; normType = 
NORM_L1 (Manhattan distance) – for numeric 
descriptors, NORM_HAMMING (Hamming distance) – 
for binary ones. BFMatcher class has the 
bfMatcher.knnMatch() method for implementing k-
nearest neighbors and the bfMatcher.match() method for 
the symmetric approach. The input parameters are 
descriptor sets of the images 1B  and 2B  and 
KNN_MATCH_COUNT – parameter k, k=2 (for the  
k-nearest neighbors). After using the k-nearest neighbor 
method, filterMatchesByNNDR() method should be 
performed for implementing the NNDR method. At the 
output, we get matches – the set of corresponding point 
pairs. 

The geometric transformation parameters were 
searched using findHomography() function, which 
implements both stages considered in the paragraph 1 
(initial model search, outlier rejection and model 
refinement for inliers). The input findHomography() 
parameters are as follows: 

– the coordinate set of the corresponding points of 
images 1B  and 2B  (obtained by executing 
bfMatcher.knnMatch( ) or bfMatcher.match( ));  

– the method for finding homography (this 
parameter was equal CV_RANSAC () for the 
application of the RANSAC method in the work);  

– the threshold for checking inequality (1) which 
was equal 3;  

– an empty set to mark the outliers and inliers by 0 
and 1, respectively.  

The output is a homography matrix and the 
completed set of outliers and inliers. 

3. Dataset description for research of 
descriptor-based normalization. The 
SYTOSS_NURE_pngPairs100 dataset was created to 
research the normalization approach based on the 
analysis of key points. It has 100 pairs of self-made 
photos with a Sony Alpha a6000 camera, converted to 
PNG format (lossless compression) and reduced to a 
size of 600400 or 400600 pixels (Fig. 3). The original 
raw images in ARW format can be found here [15]. The 
dataset consists of 5 sets of image pairs, and every set 
contains scenes of the certain type (20 images in each 
set): Building – buildings, city; Picture_outside – plane 
images outside (graffiti, posters and other plane images 
found at the streets); Picture_inside – plane images 
inside (for example, interior images, pictures, books); 
Texture_artificial – artificial textures; Texture_nature – 
natural textures. In each pair, the images differ by 
geometric transformations of variable complexity 
(displacement, scale, rotation, change of viewpoint). 

The purpose of experiments with the 
SYTOSS_NURE_pngPairs100 dataset is to analyze in 
the comparative aspect the normalization results based 
on SIFT, SURF, ORB, BRISK, KAZE, AKAZE 
descriptors for image pairs containing scenes of 
different types taken with the same equipment, PNG 
format (without compression); also, to make a general 
conclusion about the most suitable descriptors, using the 
normalization of a large number of real image pairs. 
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To test the descriptor-based normalization in the 
most complex lighting transformation, we used the 
small set Day_Night_pngPairs3, which consists of 3 
image pairs with the SYTOSS_NURE_pngPairs100 
dataset properties (equipment, size, format, geomantic 
transformation), but in each pair, one image is shot at 
day and the other at night (Fig.4). 

 

   
a 

   
b 

      
c 

   
d 

  
e 

Fig. 3. Image pairs examples for each set from  
the SYTOSS_NURE_pngPairs100 dataset:  

a – Building; b – Picture_outside; c – Picture_ inside;  
d – Texture_artificial; e – Texture_nature 

 

  
Fig. 4. Image pair example from the Day_Night_pngPairs3 

 
4. The purpose and content of experiments. The 

purpose of the research is to identify the most 

appropriate descriptors for solving the normalization 
problem. To achieve this goal, a comparative evaluation 
of quantitative indicators for SIFT, SURF128, SURF64, 
BRISK, ORB, ORB (1000), KAZE, AKAZE descriptors 
was performed at each step of normalization (key points 
search, matches, outlier rejection and obtaining 
normalization parameters), and what was even more 
important, it was compared the normalization quality 
and time costs in general. 

To estimate the normalization results based on the 
considered descriptors, the indicators shown below were 
calculated for each pair. 

4.1. Quantitative evaluation of descriptors, 
precision and recall estimation (with taking found 
overlap): 

NP – a number of found key points; NP1, NP2 – a 
number of found key points for image1 and image2, 
respectively, NPO1, NPO2 – a number of found key 
points on the overlap for image1 and image2, 
respectively;  

NM – a number of found matches, i.e., a number 
of obtained corresponding pairs of key points 
(NM=NI+NO); NMO – a number of matches located on 
the overlap; 

NI – a number of inliers found with the RANSAC 
method, NO – a number of outliers discarded with the 
RANSAC method; 

Precision = NI/ NM – the accuracy of finding 
correct matches. Precision ratio defines a part of inliers to 
all found matches, including outliers. This illustrates the 
ability of the algorithm to identify points correctly and 
provide the most similar description for corresponding 
points and vice versa dissimilar description for 
inappropriate points.  

The conclusion depends on the method used to find 
the corresponding pairs. 

RecallO1 = NI/ NPO1 – the completeness of inlier 
retrieval relative to the number of all key points on the 
overlap for the pattern (image1). RecallO1 ratio illustrates 
the usefulness of the found key points for normalization. 
It is also directly related to time costs because it gives the 
possibility to estimate how much time was wasted on 
detecting, describing and comparing points, which were 
then discarded and did not participate in the construction 
of the normalization model. 

4.2. Estimation of time costs: 
DesT – the descriptor construction time (time to 

detect and describe key points on an image), DesT1, 
DesT2 – the construction time of descriptors for image1 
and image2, respectively; 

MatchT - the retrieval time of matches for an 
image pair; 

InlierT – the inlier retrieval time found with the 
RANSAC method for an image pair; 

avgDesT – the average time for one descriptor 
construction; 

avgMatchT – the average time for one match 
retrieval; 

avgInlierT – the average time for one inlier 
retrieval with the RANSAC method; 

TotalNormT – total normalization time for an 
image pair. 
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4.3. Expert quality assessment. In this work, the 
expert rate was used for the assessment of normalization 
quality. The expert rate (ER) is the expert quality 
assessment of normalization accuracy with a 5-point 
scale: “0” – normalization failed, “1” – insufficient, “2” 
– satisfactory, “3” – good, “4” – excellent. 

Seven independent experts participated in the 5-
point scale assessment of the normalization quality of 
each image pair for every descriptor. The experts 
assessed normalization quality as the overlap accuracy 
of normalized and original pair images. Experts had to 
evaluate the normalization accuracy in a comparative 
aspect (relatively to the results obtained by other 
descriptors for the same pair). If the expert believed that 
the normalization quality got by different descriptors for 
a certain pair is comparable, one put the same rate to 
these descriptors. In the case, when all descriptors coped 
equally, the expert gave the same rate to all descriptors. 

The median of the expert rates of 7 experts was 
taken as the final assessment quality of the experiment.  

The expert rate is a relative indicator given to the 
normalization results respectively to other descriptors. 
Thus, it allows ranking the descriptors from worst to 
best in one experiment (for a certain pair). 

Value “-1” was assigned if the normalization could 
not be performed due to the lack of a sufficient number 
of matches to determine the homography matrix. 

In this research, expert assessments were used to 
estimate the normalization quality because only a 
human can assess the quality of the normalized and 
original image overlap most accurately. However, this 
approach is time-consuming and subjective. In the 
future, it is planned to conduct a research to define some 
quantitative rates of normalization quality, which are 
calculated after normalizing automatically and correlate 
with the expert assessment maximally. 

4.4. Averaging the values of indicators and the 
rates. The above-mentioned rates and indicators were 
calculated for 100 real image pairs from the 
SYTOSS_NURE_pngPairs100 dataset. Then for each of 
5 sets (Building, Picture_outside, Picture_inside, 
Texture_artificial, Texture_nature), as well as for the 
whole dataset, the mean values were computed: 

– mean values of absolute indicators NP, NM, NI; 
– mean values of relative indicators Precision, 

RecallO1; 
– mean values of time costs indicators DesT; 

MatchT; InlierT; AvgDesT; AvgMatchT; AvgInlierT; 
TotalNormT; 

– the quantity of the same values of the expert rate 
ER for each value (“0”, “1”, “2”, “3”, “4”), as well as 
the amount of cases where the normalization did not 
occur due to the lack of inliers (values “-1”); 

– mean values of expert rates ER for each 
descriptor (arithmetic mean MeanER and median). 

4.5. Converting all indicator values from 4.4 to 
an 8-point rating scale. To summarize and compare the 
descriptors for different indicators easier, all assessment 
values were converted to an 8-point scale (point 8 is the 
highest mark). One of the values from 1 to 8, depending 
on which interval it got into, was assigned to each value 
of the indicator. The interval was calculated using the 

following formula: 
(min + i* step; min + (i+1)*step] 

where step = (max - min) / 8, max, min – maximum and 
minimum values of indicator respectively, i = 0,…,7. If 
a larger value was considered the best for an indicator, 
then the highest score 8 was assigned to the values from 
the last interval (min + 7 * step, max]. Vice versa, if a 
lower value was regarded as the best, then the highest 
score 8 was assigned to the values from the first interval 
[min, min + step]. 

5. Normalization research results based on the 
descriptors SIFT, SURF128, SURF64, BRISK, ORB, 
ORB(1000), KAZE, AKAZE. The limited volume of 
this paper makes it possible to present only generalized 
results for the whole dataset. The details of normalization 
results for each pair, as well as, many summary tables 
and diagrams for each of the sets and the entire dataset, 
can be found here [15]. The normalization research 
results averaged for the whole dataset are shown in 
paragraph 5.1–5.4. The main received regularities for 
each type of scenes are illustrated in 5.5. 

5.1. Comparison of descriptors by the mean 
number of key points, matches (with the NNDR 
method) and inliers. The experiments showed that a 
significant excess of the mean NP is characteristic for 
the ORB algorithm (from 2.6 times for the BRISK 
algorithm to 11 ones for the AKAZE algorithm) 
(Fig. 5). Sorting out the mean values of NP, one can see 
that, according to the number of found points, the 
algorithms are placed in the following order (from 
larger NP to smaller one): ORB >> BRISK >> SURF64, 
SURF128, SIFT >> ORB1000 > KAZE, AKAZE. 

 

 
Fig. 5. Mean number of key points and matches  

found at the first three stages of normalization for 
SYTOSS_NURE_pngPairs100, i.e., the mean of such rates:  
a number of found key points (NP); a number of matches 

found with the NNDR method and located on the overlap (NMO);  
a number of inliers found with the RANSAC method (NI) 
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The largest and least mean values of NMO, NI are 
the same as for NP: the largest is for the descriptor 
ORB, the least – for ORB1000, KAZE, AKAZE that 
can be seen in Fig.5. This figure also shows the 
numerical values of mean NP, NMO, NI. Changes of 
NMO, NI values for different descriptors have the same 
regularity. Descriptors can be arranged by NI (from 
larger to smaller) as follows: ORB >> SIFT > BRISK > 
> SURF64 > SURF128 > ORB1000, KAZE > AKAZE, 
where the SIFT algorithm is seen moved from 5th 
position (by found NP) to 2nd position, overtaking 
BRISK, SURF64, SURF128, i.e., it has the higher 
percentage of key points which will be used for 
normalization. 

The descriptor evaluation by NP, NMO, NI was 
carried out under the assumption that the greater the 
number of NP, NMO, NI, the more accurately 
constructed the normalization model and, therefore, the 
higher the normalization quality, however, too much 
quantity of such ones requires a lot of time that will be 
presented below. 

5.2. Descriptor comparison by Precision and 
Recall ratios. The descriptor evaluation by Precision 
and Recall was performed supposing that: 

– the higher value of Precision, the more alike 
description of really similar objects (points) we get with 
this algorithm and the more unlike description for 
dissimilar ones. In addition, with high Precision, there is 
less unnecessary work when it takes time to find 
matches, some of which are outliers and will be rejected 
with the RANSAC algorithm; 

– the higher RecallO1, the less time wasting for 
getting key points at the first step. RecallO1 shows the 
percentage of key points found at the 1st step, which 
will be used to define a homography matrix at the 3rd 
step, i.e., allows estimating a share of found points 
actually used for normalization. 

The results of Precision and RecallO1 research for 
the whole dataset are presented in Fig. 6. 

 

  
a                                                    b 

Fig. 6. Mean precision and recall for the whole dataset 
SYTOSS_NURE_pngPairs100: a – mean precision 

(Precision); b – mean recall (RecallO1) 
 

The mean values of Precision for all descriptors 
vary in the range from 0.77 to 0.87, i.e., at the average 
for the different descriptors, the RANSAC method 
rejects from 23 to 13 percent of NO, which were 

incorrectly defined as matches by the NNDR method 
(Fig. 6).  

The highest (best) Precision was shown by the 
descriptors BRISK, SIFT, the worst one – by SURF64. 
In general, by Precision value, the descriptors can be 
sorted from the best to the worst as follows: BRISK, 
SIFT > AKAZE > ORB > KAZE > ORB1000 > 
SURF128 > SURF64. 

The mean values of RecallO1 throughout the 
dataset show a variance in the range from 0.1 
(SURF128) to 0.22 (SIFT) (Fig.6). The descriptor ORB, 
which has a significant excess in the number of key 
points comparing with the other descriptors (Fig.5), has 
mean RecallO1 equal 0.12, i.e., only 12% of the points 
found are used to determine a normalization matrix. By 
RecallO1, the descriptors can be ordered (from the best 
to the worst) as follows: SIFT >> KAZE > AKAZE > 
ORB1000 > SURF64 > ORB, BRISK > SURF128. 

5.3. Time costs comparison. Let’s consider time 
costs searching for a descriptor, a match (method 
NNDR) and an inlier (Fig. 7). According to Fig.7, ORB 
shows significantly less time to calculate one descriptor 
(AvgDesT), then ORB (1000) and BRISK come, and 
after them AKAZE. SIFT, SURF64, SURF128 
descriptors appear next with comparable time. The 
KAZE descriptor illustrates significantly more time. 
The average one-match search time (AvgMatchT) with 
the NNDR method is essentially more consuming for 
ORB. AKAZE and ORB(1000) has the least 
AvgMatchT. 

 

 
Fig. 7. Average retrieval time for a descriptor,  
a matching and an inlier for the whole dataset 

 
The average retrieval time for one inlier 

(AvgInlierT) is longer for ORB1000 and AKAZE 
algorithms. For all algorithms, the values of AvgInlierT 
are significantly less than the values of AvgDesT or 
AvgMatchT. However, if we compare the values of 
AvgDesT and AvgMatchT for different descriptors, we 
do not see a single pattern. For KAZE, the time of 
AvgDesT is 3 times longer than AvgMatchT, and for 
other algorithms, AvgDesT is essentially less than 
AvgMatchT, but for ORB, AvgDesT is significantly 
less, more than 14 times. 
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However, the most useful for future conclusions in 
a comparative aspect is the total time for normalizing 
one image pair averaged for the whole dataset 
(TotalNormT). Fig.8 presents the time spent on the 
definition of all descriptors on the first and second 
images (DesT1, DesT2); all matches MatchT found with 
the NNDR method; all inliers InlierT for one image pair 
(all-time evaluations were averaged for the whole 
dataset). 

The sum of the mean values of DesT1, DesT2, 
MatchT, InlierT is the mean total time (TotalNormT) of 
the normalization of one image pair for the dataset 
SYTOSS_NURE_pngPairs100 (Fig.8). Clarifying the 
fact that TotalNormT was estimated for a certain dataset 
is important because TotalNormT directly depends on 
the size of the images, the share of total scenes in pairs 
(overlap), and the type of scenes. 

Below, we can see the same TotalNormT diagram 
for the case of using the symmetric method at the 2nd 
step of normalization (match search). This figure shows 
that the mean time for normalization almost doubles, as 
it was above mentioned in paragraph 2. 

 

 
Fig. 8. Total normalization time costs of one image pair  

with using the NNDR method for a match search  
(averaged for the whole dataset) 

 

 
Fig. 9. Total normalization time costs of one image pair  

with using the symmetric method for a match search  
(averaged for the whole dataset) 

 
Summing up the time costs, the descriptors by the 

total normalization time TotalNormT can be ranked as 
follows (from faster to slower):  

ORB1000 < AKAZE << BRISK, SURF64 <  
< SIFT < SURF128 << KAZE << ORB. 

5.4. The normalization quality comparison 
based on expert assessments. All 800 experiments (for 
each pair of images 8 descriptors, 100 pairs) were 

evaluated by experts (“0” –“4”). If normalization could 
not occur due to insufficient matches, the experiment 
was given the value “-1” [15]. The expert rate revealed 
that 68% of experiments for this dataset scored “4” and 
“3” (good and excellent), 7% were unsuccessful, 
scoring “-1” and “0” (Fig.10).  

 

 
Fig. 10. Distribution of expert rate values 

 
Fig. 11 and Table 3 illustrate how these rates were 

distributed among the descriptors, where it can be seen 
that SIFT is a clear leader. This descriptor has the 
biggest number of the highest rate “4”, the least number 
of the rate “0”, the rate “-1” is absent at all.  

 

 
Fig. 11. Distribution of expert rate values by the descriptors 

for the SYTOSS_NURE_pngPairs100 dataset  
(for each descriptor, it is calculated the quantity  

of the same values of the expert rate (ER) for each value  
(“0”–”4”), as well as the quantity of cases  

where the normalization did not occur (“-1”) 
 

Table 3 – Quantity of expert rates with the same values and 
mean exert rates for each descriptor (800 pairs) 

Quantity of the same ER values 
Mean 
ER     Descriptor 

-1 0 1 2 3 4  

SIFT 0 2 1 10 19 68 3,5 

SURF128 1 5 5 15 26 48 3,04 

SURF64 0 4 6 14 32 44 3,06 

ORB 0 3 6 21 27 43 3,01 

ORB1000 0 9 19 21 26 25 2,39 

BRISK 1 5 7 15 25 47 2,99 

KAZE 7 5 2 28 25 33 2,57 

AKAZE 6 6 9 24 30 25 2,41 

Total quantity 15 39 55 148 210 333  
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Fig. 12, a and Table 3 show the arithmetic mean 
(MeanER) of expert rate values for each descriptor, 
where one can notice that the highest mean value 3.5 
belongs to SIFT, the descriptors SURF64, SURF128, 
ORB, BRISK follow. ORB1000 and AKAZE have the 
lowest mean ones.  

For SIFT only, the median of the expert rates 
has a value 4. If the median is calculated without the 
negative points “-1” and “0”, then the value 4 has 
SURF128 [15]. 

Based on the mean expert assessment and its 
median, the descriptors can be arranged in the following 
order (from a higher expert rate to lower):  

SIFT >> SUFR128, SURF64, ORB, BRISK >  
> KAZE > AKAZE > ORB1000. 

Thus, according to the experts, the SIFT descriptor 
has a definite advantage in the normalization quality, 
but it has the middle position by time consuming  
(Fig. 8). 

This paper didn’t have such a purpose to research 
descriptors under significant lighting changes, but the 
experiments with 3 pairs of Day_Night_pngPairs3 
dataset have shown that SIFT presents the best result 
(all pairs have an expert rate “4”), and KAZE has the 
lowest mean expert rate (Fig. 12, b, 13, 14).  

However, this issue requires additional research 
for more images. The results of the experiments can be 
found here [15]. 

 

   
a                                                  b 

Fig. 12. Arithmetic mean of expert rate values (AvgER):  
a – mean expert rate for SYTOSS_NURE_pngPairs100;  

b – mean expert rate for Day_Night_pngPairs3 
 

 
Fig. 13. Distribution of expert rate values  

by the descriptors for Day_Night_pngPairs3 

 
Fig. 14. Result of normalization  
for the image pair  from Fig. 4 

(Day_Night_pngPairs3) 
 
5.5. Analysis of normalization results for scenes 

of different types. The paper considers how the 
descriptors process images of different sceneries 
(Building, Picture_outside, Picture_inside, 
Texture_artificial, Texture_nature).  

As the limited volume of the printed version does 
not allow to illustrate all the obtained regularities, in this 
article, only some of them appear below: 

– all algorithms are characterized by a significant 
increase in number of found key points NP for natural 
textures. This increase is particularly typical for ORB; 

– ORB, BRISK descriptors have a fairly 
consistently high mean Precision for all sets (from 0.84 
to 0.87 for ORB, from 0.85 to 0.89 for BRISK). For 
other algorithms, the mean Precision varies significantly 
from set to set. For example, the SIFT algorithm shows 
the highest Precision value of 0.93 for artificial textures. 
In general, the scatter of mean Precision for different 
sets is 0.09; 

– except SIFT, all descriptors showed the worst 
RecallO1 for artificial textures, SIFT has the highest 
RecallO1 for all sets; 

– the time indicator AvgDesT for detection and 
description of one key point for the descriptors ORB, 
BRISK and ORB100 is significantly less than for the 
others and does not depend on the type of scene. For the 
other algorithms, AvgDesT values differ depending on 
scene types. 

– the ORB algorithm proved to be very slow 
working with natural textures, that affected the 
estimation of time cost TotalNormT with this algorithm 
for the whole dataset (Fig.8,9); 

– the lowest mean expert rate was defined for 
textures, at that natural texture is processed worse with 
SIFT, SUFR128, SURF64, ORB, ORB1000, BRISK 
descriptors, and artificial texture is worse with KAZE, 
AKAZE; 

– there are 13 cases out of 15 ones for artificial 
texture when normalization was not possible  
(ER =”-1”), where 11 cases occurred under KAZE and 
AKAZE algorithms. The natural texture had the lowest 
quantity of the rate “4”. SIFT descriptor shows the 
highest expert rates for each set. 

All results of experiments for different scene type 
sets can be found in [15]. In general, we conclude that 
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normalization with the research method gives the worst 
results for natural and artificial textures.  

This can be explained by the fact that natural 
textures often have distortions partly beyond projective 
transformations, and the artificial textures have more 
quantity of similar neighborhoods for not corresponding 
key points. However, to confirm the identified 
regularities, it is necessary to increase the number of 
image pairs from 20 to at least 100 pairs for each scene 
type. 

5.6. Final conclusions on experiments. For the 
convenience of comparative descriptor analysis and 
making final conclusions on the work was constructed: 

1) the bubble diagram (Fig.15) which clearly 
illustrates the number of values of the best expert rate 
“4” and the time costs for all descriptors, where the 
point size indicates the number of failed normalizations 
(“-1” and “0”); 

 

 
Fig. 15. Time costs VS expert rates of quality  

(the number of values “4” is on the abscissa axis,  
the time costs value is on the ordinate axis,  

the point size is the number of failed normalizations  
(“-1” and “0”), for instance, point size is 2 for SIFT  

and 12 for KAZE, AKAZE ) 
 

2) the rating diagram (Fig.16), which was made by 
converting values for each indicator into the 8-point 
rating scale (see paragraph 4.5). This diagram obviously 
presents the rating of descriptors for the considered 
indicators by the groups: 

 quantitative estimates NP, NMO, NI; 

 relative values Precision and Recall; 
 time costs estimates DesT, MatchT, 

TotalNormT (InlierT is not given because its values are 
too small and their effect on time costs, in general, is 
not significant); 

– relative quality assessments based on such 
expert rates: ER=”4” (the winner), ER=”-1” (absent), 
ER=”0” (failed) and the mean expert rate MeanER. 

The diagrams 15, 16 allow to make the following 
conclusions: 

– the descriptors AKAZE and ORB1000 have the 
best time costs but the least number of expert rate “4” 
and a high level of failed normalizations; 

– the descriptors BRISK, SURF64, SIFT, 
SURF128 have comparable time costs and occupy an 
average position in time costs relative to the other 
descriptors, but SIFT significantly exceeds BRISK, 
SURF64, SURF128 in quality (a maximum number of 
the expert rate “4” and a minimum number of 
normalization failures).  

– for the SIFT algorithm, the ratio of the number 
of found matches to the detected points is higher than in 
other algorithms, i.e., SIFT detects key points and gives 
them a description in the best way, that makes it the 
winner by normalization quality among the compared 
algorithms. As for SURF128, SURF64, they have a 
similar number of key points with the SIFT algorithm, 
but a share of found points, which are useful for 
normalization, is the lowest. The normalization quality 
with SURF128, SURF64 is similar, like with the BRISK 
descriptor. 

– the KAZE descriptor normalizes 1/3 longer than 
algorithms BRISK, SURF64, SIFT, SURF128 (but 
ORB does it even longer), with a maximum number of 
normalization failures (maximum number of the rate  
“-1”). The total number of rates “-1” and “0” is very 
similar for KAZE, AKAZE; 

– the ORB descriptor has the most essential time 
costs, and the normalization quality is comparable to 
SURF64, SURF128, BRISK. The great ORB time costs 
are caused by the significant expenses on finding 
matches for a large number of points (the ORB 
algorithm finds the maximum number of key points, and 
only 10% of them are used for normalization). 

 

 
Fig. 16. Converting all indicator values  

to an 8-point rating scale (point 8 is the highest mark).  
Each value was assigned to one of the marks from 1 to 8, 
depending on which interval it got into (paragraph 4.5) 
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Conclusions 
Thus, in this paper, the image normalization 

method implementation based on the analysis of the key 
points is considered in detail. Comparative estimation of 
the quality and time costs of the full-cycle descriptors 
SIFT, SURF128, SURF64, BRISK, ORB, ORB (1000), 
KAZE, AKAZE was conducted. 

The following conclusions as to the result of the 
research: 

 all descriptors can be used for normalization; 
 the SIFT algorithm presented the best quality 

(even at an extreme change of lighting), however, SIFT 
time costs occupy an average position, along with 
SURF, BRISK which are significantly inferior to it by 
quality; 

 the fastest algorithms were ORB1000 and 
AKAZE, the normalization quality with them is lower 
than with other algorithms; 

 the KAZE algorithm is slower (only ORB is even 
more slower) and inferior to SIFT, SURF, BRISK, ORB 
in quality; 

 the ORB descriptor has the most substantial time 
costs and averaged quality comparable to SURF and 
BRISK; 

 SURF64 and SURF128 descriptors showed 
comparable quality and time costs, SURF64 is faster, 
SURF128 has better quality, but these differences are 
insignificant; 

 the worst results were obtained for texture 
images; 

 the symmetric method usage for searching 
matches at the 2nd step doubles the time costs of the 
normalization process in general. 

Therefore, it is recommended to use the SIFT 
descriptor for general tasks where it is necessary to 
process images with the scenes, which are similar to 
ones of the dataset SYTOSS_NURE_pngPairs100, and 
the time costs requirement is not critical.  If time costs 
are paramount and quality can be neglected within 
reasonable limits, it is better to use binary descriptors 
ORB1000 or AKAZE. 

Findings on the paper are based on the image 
normalization of the SYTOSS_NURE_pngPairs100 
dataset, which contains image scenes of different types, 
40% of which are images of natural and artificial 
textures.  

As the normalization of images of this type 
showed the worst results, the conclusions for the other 
sets may differ slightly. 

In this work, the expert rates were applied to assess 
the normalization quality because a person can match 
images after normalization in the best way, but this 
approach to estimation is very time-costuming and is 
not devoid of subjectivity.  

So, further research should focus on the 
development of an automatic criterion for assessing 
normalization quality and research of normalization 
result stability under various distortions: geometric 
transformation, illumination and degree of 
compression. 
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Дослідження методу нормалізації зображень на базі дескрипторів  
та порівняльний аналіз дескрипторів SURF, SIFT, BRISK, ORB, KAZE, AKAZE  

О. В. Яковлева, К. Г. Ніколаєва 

Анотація .  Предметом досліджень є нормалізація зображень на основі аналізу характерних точок. Метою є 
розроблення математичних моделей та їх програмна реалізація для нормалізації геометричних перетворень зображень на 
основі аналізу дескрипторів SIFT, SURF, ORB, BRISK,  KAZE, AKAZE; застосування цієї моделі для проведення 
порівняльного аналізу дескрипторів на основі експертних оцінок якості нормалізації, часових витрат та інших 
показників; формування та використання в експериментах власного датасету зі 100 реальних пар зображень, які містять 
сцени п’яти типів: будівлі та міські пейзажі, плоскі зображення, що зустрічаються на вулиці, плоскі зображення 
внутрішнього інтер’єру, природні та штучні текстури; висновки відносно використання розглянутих дескрипторів для 
вирішення задач нормалізації. Застосовуваними методами є: дескриптори SIFT, SURF, ORB, BRISK, KAZE, AKAZE для 
опису характерних точок, Nearest Neighbor Distance Ratio метод або симетричний метод для пошуку відповідних пар 
характерних точок з різних зображень, RANSAC метод для видалення хибних відповідностей та отримання параметрів 
матриці гомографії, міри подібності, програмне моделювання. Отримані результати: результати експериментів щодо 
нормалізації дескрипторами SIFT, SURF, ORB, BRISK,  KAZE, AKAZE для 100 реальних пар зображень (нормалізовані 
зображення, їх перекриття, кількісні оцінки дескрипторів, precision and recall показники, часові витрати, експертні 
оцінки якості, конвертація всіх значень показників в 8-бальну рейтингову шкалу, підсумкові діаграми та висновки про 
переваги та слабкі місця дескрипторів, що порівнювалися; рекомендації відносно реалізації методу нормалізації у 
конкретних випадках. 

Ключові  слова:  нормалізація геометричних перетворень; детектор; дескриптор; SURF; SIFT; BRISK; ORB; 
KAZE; AKAZE; метод RANSAC; метод k-найближчих сусідів; Nearest Neighbor Distance Ratio; бібліотека OpenCV. 

 
Метод нормализации изображений на базе дескрипторов  

и сравнительный анализ дескрипторов SURF, SIFT, BRISK, ORB, KAZE, AKAZE 
Е. В. Яковлева, Е. Г. Николаева 

Аннотация.  Предметом исследований является нормализация изображений на основе анализа характерных 
точек. Целью является разработка математических моделей и их программная реализация для нормализации 
геометрических преобразований изображений на основе анализа дескрипторов SIFT, SURF, ORB, BRISK, KAZE, 
AKAZE; применение данной модели для проведения сравнительного анализа дескрипторов на основе экспертных 
оценок качества нормализации, временных затрат и других показателей; формирование и использование в 
экспериментах собственного датасета из 100 реальных пар изображений, содержащих сцены пяти типов: здания и 
городские пейзажи, плоские встречающиеся на улице изображения, плоские изображения внутреннего интерьера, 
природные и искусственные текстуры; выводы относительно использования рассмотренных дескрипторов для решения 
задач нормализации. Применяемыми методами являются: дескрипторы SIFT, SURF, ORB, BRISK, KAZE, AKAZE для 
описания характерных точек, метод Nearest Neighbor Distance Ratio или симметричный метод для поиска 
соответствующих пар характерных точек на разных изображениях, метод RANSAC для удаления ложных соответствий 
и получения параметров матрицы гомографии, меры сходства, программное моделирование. Полученные результаты: 
результаты экспериментов по нормализации дескрипторами SIFT, SURF, ORB, BRISK, KAZE, AKAZE для 100 реальных 
пар изображений (нормализованные изображения, их перекрытия, количественные оценки дескрипторов, precision and 
recall показатели, временные затраты, экспертные оценки качества, конвертация всех значений показателей в 8-
балльную рейтинговую шкалу, итоговые диаграммы и выводы о преимуществах и слабых места сравниваемых 
дескрипторов; рекомендации относительно реализации метода нормализации в конкретных случаях. 

Ключевые слова:  нормализация геометрических преобразований; детектор; дескриптор; SURF; SIFT; BRISK; 
ORB; KAZE; AKAZE; метод RANSAC; метод k-ближайших соседей; Nearest Neighbor Distance Ratio; библиотека 
OpenCV. 


