ISSN 2522-9052

CyuacHi inpopmaniiiai cuctemu. 2020. T. 4, Ne 4

UDC 004.083.8:004.853

doi: 10. 20998/2522-9052.2020.4.06

Rustam Gamzayev, Mykola Tkachuk, Daria Shevkoplias

V. N. Karazin Kharkiv National University, Kharkiv, Ukraine

KNOWLEDGE-ORIENTED INFORMATION TECHNOLOGY
TO VARIABILITY MANAGEMENT AT THE DOMAIN
ANALYSIS STAGE IN SOFTWARE DEVELOPMENT

Abstract. The subject matter of this paper is a research of issues related to the variability management at the stage of
domain analysis (DA) in the full life cycle (FLC) of software products line (SPL). The main goal of this research work is
the elaboration of a new knowledge-based information technology to support a variability management in DA as a most
complex and weak-formalized stage in FLC of SPL. In order to reach this goal the following tasks were formulated and
resolved: to analyze the variability issues in FLC on the example of the modern agile-development approach - in the
Scrum-methodology; to study how the methods of knowledge handling can be used to support some users and domain-
experts activities within the DA phase with respect to software variability modeling; to make the motivated choice of the
suitable CASE-tools to elaborate an appropriate IT solution to support the knowledge-oriented approach to DA; to present
this IT-solution in a structured form, to consider some its implementation issues, and to discuss the first testing results. The
methods used in this research are: domain-driven design approach to software development, repertory grids method and
ontologies for expert’s knowledge handling, IDEF0 notation for specification of the proposed IT solution, feature-oriented
domain analysis (FODA) for variability modeling. Conclusions: the results of this research shown that the special attention
has to be paid to the DA in a FLC, especially with usage of knowledge-based methods. To perform this process in an
effective way the repertory grids method is motivated chosen and analyzed. To support the usage of this method in DA the
proposal is made to elaborate the special IT-solution using some already available CASE-tools. The essentials functionality
features of two such systems: GridSuite and SOVA (Semantical and Ontological Variability Analysis) are considered, and
basing on this result, the integrated IT-solution is elaborated and presented in form of the IDEF0 diagram. Finally, the main
technological facets of these tools installation are studied and tested, and the test-case to show the possibility to generate
the FODA-variability model for the “Smart-Home” application domain is provided.

Keywords: knowledge; software; life cycle; domain analysis; variability; repertory grids method; ontology; information

technology.

Introduction. Research actuality and aims

Nowadays in the domain of Software Engineering a
growth number of new advanced methodologies, methods
and tools are proposed, in order to produce new software
products with lower cost, in shorter time, and with respect
to their quality attributes [1]. Because of a lot of changes
in user needs and in software and hardware components
used in these processes developers are supposed to
provide variable design solutions at all phases of their full
life cycle (FLC) (see, e.g. in [2, 3]). Especially, these
problems are really important and complex at such
complex and weak-formalized stage of software FLC as a
Domain Analysis (DA).

Even the short review of some information
sources given in [4-9] has showed, that exactly to
resolve these sophisticated issues so-called knowledge-
oriented models and methods can be applied
successfully (see in [10] for more details). To automate
these approaches, it is also extremely important to
propose appropriate information technologies (IT)
which should be elaborated with usage of some already
available CASE-tools to be integrated and configurated
taking into account main specific activities included into
the DA phase of FLC. Such advanced IT-solutions
should allow to support a handling of expert knowledge
in an appropriated problem domain in order to get
finally the needed result in form of the correct domain
model, e.g. as a FODA diagram, etc. [2, 9].

That is why the research topic presented in this
paper is really actual, and the main tasks to be resolved
in this way are the following:

- to analyze the variability issues in software
FLC on the example of one of the modern and
sophisticated agile-development approaches: on the
Scrum-methodology;

- to provide the real example how the methods of
knowledge processing can be used to support some
users and domain-experts activities within the DA
phase, with respect to software variability modeling;

- to make the motivated choice of the suitable
CASE-tools to elaborate an appropriate IT — solution to
support the knowledge-oriented approach to DA;

- to present this IT-solution in a structured form,
consider some its implementation issues, and to discuss
the first testing results.

Finally, in the last section the conclusions and
future works are discussed.

Variability management in full life cycle
of software development: general framework
and the usage in Scrum methodology

The problems of software variability issues in FLC,
mentioned above, are really important in the domain of
Software Product Lines (SPL) development, which are
the special kind of software-intensive applications built
using a set of configurable or adaptable components [2,
6]. According to the reference framework for SPL
engineering (SPLE) proposed by K. Pohl et al. in [2],
there are 2 logical levels in all their FLC activities:

(I) Domain Engineering Level (DEL) that
provides a reusable operational platform to define the
commonality and the variability features of future SPL
components;

© Gamzayev R., Tkachuk M., Shevkoplias. D., 2020

39

Advanced Information Systems. 2020. Vol. 4, No. 4

ISSN 2522-9052

(I) Application Engineering Level (AEL) that is
responsible for the development of target SPL-applications
based on the operational platform established at the DEL.
Each of these 2 levels: the DEL and the AEL, has a similar
sequence of the the ordered FLC phases: Requirements
Engineering, Domain Analysis, Domain Design,
Architecture Design and Implementation, and there are a
lot of appropriate development methods and CASE-tools
to support them in an effective way [2, 3].

In order to consider the specific technological facets
of the unified SPLE — framework [2], we propose to make
a logical mapping of its main FLC phases to the structured
scheme one of wide-used software agile-development
approaches, namely to Scrum method [7], and this
mapping result is shown in Fig. 1. Taking into account
these mapping results, it is to mention that the main SPLE
phases are ordered into 2 logically interconnected FLC —
subschemas, namely (see in Fig. 1):

1) the FLC phases: Domain Analysis,
Requirements Engineering and Domain Design build
the first subschema in FLC, which represents the
Customer’s needs to be realized technologically in a
target SPL, and in terms of the Scrum-methodology they
are reflected in such its artefacts as Product Backlog and
Sprint Backlog respectively;

2) the FLC phases: Architecture Design, Domain
Implementation and Component Implementation from
the second subschema in the FLC, which reflects the
Developer’s activities to be performed in such Scrum —
processes as Daily Scrum Meeting (DSM) and Sprint
iteration (S).

These 2 FLC subschemas are represented in Fig. 1
as the two large dashed ovals: the Sub-FLC(1) and Sub-
FLC(2) shown in Fig. 1 respectively, and they are
shown overlapped graphically, because from the project
development point of view, their processes are
interconnected technologically via activities Domain
Design and Architecture Design. Besides that, the 3
small ovals depicted with solid lines and also shown in
Fig. 1, represent the following development artifacts
(functions): “Customer’s needs”, “Expert’s knowledge”
and “Developer’s activities”. Obviously, exactly the
artifact “Expert’s knowledge” is a semantical “bridge”
between other two ones (this issue is depicted with
2 bold dashed lines between them). That is why the
appropriate IT - solutions should be elaborated exactly
to support the handling of expert’s domain knowledge,
in order to integrate in an effective way other main
processes within the whole FLC of SPLE.

ST Sub-FLC (1) <, Sub-FLC (2) Hinag
K ‘Domain Domain i Domain "\‘ Domain
/| Engineering |Analysis ,.’ Design ‘.‘ Implementation
= :—
Customer’s o _' _ Expert’s _ _:_ — Developer’
‘,\ needs ‘4‘ nowledge ; activities
s = x .I.
"~Application Requirement = Architecture & Component !
Engineering |Engineering '~. |Design e Implementation |.--
Product Backlog /‘
P |
I
|
S Bkl SORWaRS Prodict
———— e—— =9
[N —

i Product owner i

Iteration control
f Developer team

Fig. 1. The mapping results of the SPLE phases to the Scrum method activities
(to compare with the SPLE - vision presented in [2])

An approach to handling of domain experts
knowledge with repertory grid method

As it was already mentioned above, in [10] the
recent overview of some methods for knowledge-
oriented software development is presented, such as
Decision Trees, Case-Based Reasoning, Heuristic-based
learning and some others. From the point of view on
multi-criteria and from an unified approach to its usage
in different problem domains, the Repertory Grids (RG)
method [13] was chosen for a further usage on expert’s
knowledge handling in FLC of SPLE. The main idea of
this method supposes that a cognitive and collaborative
thinking of experts and users in a given problem area

can help to provide the domain analysis effectively, to
decrease the software development costs, and finally to
support an appropriate level of components variability
in SPLE.

Any RG is represented as a matrix of the required
dimensions (normally, not higher than 3x3), that reflects
the different semantical contexts of a given domain
(represented as the matrix columns), and the target
software product characteristics (structured as matrix
rows), which can be variable depending on the specific
domain features. According to this vision, an
appropriate RG includes 3 sets of basic items (£, C, V),
and in [10] they are illustrated with the examples of the
Smart-home systems (SHS) domain:

40

ISSN 2522-9052

CyuacHi inpopmaniiiai cuctemu. 2020. T. 4, Ne 4

a) a set of Elements (E). they can be
defined based on the domain expert interviews
which have to be divided into semantic objects to
be represented as RG columns, (e.g.: “Smart
V", “Smart light sensors” ...);

b) a set of Constructs (C). they characterize
the alternative variable features of RG elements,
and they are placed in the RG rows depend on the
appropriate context, (e.g. “Smart TV should be
turned on / turned off’; “Smart light sensors .
should be switch on / switch off”, ...);

c) a set of rating Values (V): they are used
to represent the behavior of the software system
under the influence of certain elements in some
range (usually from 1 to 5), where the lowest
value of range represents the left bipolar
construct, and the highest value of range the right
bipolar construct, e.g. the element “Smart TV ”
should be turned on (the value of 1) or turned off
(the value of 5), depend of a given context.

Taking into account these definitions
(a) — (c¢), we can propose the following set-
theoretic representation of the RG as a tuple:

RG={E,C,V},

()

where E, C, and V are the set of elements, set of
constructs and set of rating values respectively.

The next advantage of the RG method is its
adequate visualization of the expert knowledge
handling. For example, in SHS these aspects (RG or
dimensions) can be defined as [8]: 1) social aspects (any
SHS has to be a user-friendly solution, 2) economical
aspects (the project costs should be acceptable for SHS
owners), 3) environmental aspects (any SHS should be
an eco-friendly facility, etc.). Taking into account these
3 dimensions the appropriate problem space (PS) for the
users and experts knowledge handling can be specified
using RG method and the result is shown in Fig. 2.

To continue the formalization of the RG method,
we can represent this space as a subset of the Cartesian
product for the three sets defined in (1), namely:

00O ; ' Construct the PS -
m’D TUser and Domain Expert space
Analysis of
identified conflicts
or conditions
0 O Domain Expert and
@'D System Analyst

Identify the key
features

Fig. 2.

Feature Model

-

Experts in
Economy

Environmental Context

,,,,,,,,,,,,,,,,,

Social/User Context -

[
‘}_”,

Users

The conceptual schema of RG method usage (based on [13])

PS(RG)c ExCxV (2)
The further consideration of the RG method to

handle the users and expert’s knowledge on the example
in SHS domain can be found for more details in [10].

Some CASE - tools for knowledge handling
in domain analysis: GridSuite and SOVA
systems in a nutshell

In addition to functional requirements elicitation,
the RG methodology can provide an opportunity for
analysis of experts’ design approaches to system
architecture. The RG technique can be used to explore
the multidimensional space of the complex adaptive
systems of the social-technical environment (e.g.
“Smart-Home systems” (SHS) domain).

The whole process of variability analysis through
the RG can be generalized into following steps [13],
which are presented in Fig. 3.

Construct the DS - System Analyst and 0 0]
space Requirement Engineer @D
Defining the
intentions and
desires of the user
Requirement Engineer 0 O
and System Architect @m
v

Select the most
suitable features of
the system

Fig. 3. Step-by-step process of variability modeling with RG method (to compare with [13])

41

v

Advanced Information Systems. 2020. Vol. 4, No. 4

ISSN 2522-9052

Variability analysis process starts from
construction of the problem space (PS) involving users
and domain experts and then continues by analysis of
conflicts or contradictions, identification of key
features, construction of the design space (DS),
definition of the intentions and user desires and
selection of the most suitable features of the system
involving the requirements engineers and designers
through all the listed below stages.

Presented step-by-step variability analysis in the
automated form can be implemented using the
GridSuite tool [14] (CASE - tool) for elicitation, editing
and analyzation of the interview-based RG. Comparing
with other tools that are used to work with RG,
GridSuite tool highlights user’s role in RG creation as
an interpreter of the interview data. Besides, GridSuite
has additional build-in instruments for editing,
analyzing and statistical calculations. The input data is a
new or existing expert interview. The output data is an
XML file with elements, functional system
characteristics and their evaluations, or a created
dendrogram, from which it’s possible to elicit similarity,
differences and variability indicators of
elements/functional properties.

The main functionalities of the GridSuite tool are
[15]:

- ability to present new or existing interviews as
the inputs for further PS description;

- editing of one (adding, changing, deleting) or
several RG’s (merging grids);

- analysis of the obtained RG’s by numerous
methods (cluster analysis method, raw data and it’s
statistics method, main components analysis method

and mouse sort method);

- parsing of the created RG’s files (filters
applying, reports creation, etc.).

The next step of experts’ knowledge handling is
the usage of the instrument, with help of which it is
possible to build a FODA — model of domain space on
the basis of the GridSuite initial data. This can be done
with the SOVA (Semantic and Ontological Variability
Analysis) tool [16] which is a CASE - tool combines
semantical and ontological approaches to reflect system
behavior rather than its implementation. The estimation
of domain-focused behavior for existing or future
system occurs by the representation of such system
dynamical aspects in the form of ontology [17]. The
appropriate semantic metrics are used to assess the
similarity of the related system elements and to their
variability analysis.

Fig. 4 represents the SOVA — tool functional
properties for the facilitation of the ontology system
creation, its behavior evaluation and similarity
identification of the related elements, namely:

- text artifacts parsing using natural language
processing methods (NLP) that consist of semantical
role labeling, pronouns replacement and ontological
model creation;

- similarity calculation of the analyzed behavior
forms on the basis of entered into the system artifacts
according to the criteria of initial conditions, external
events and post-conditions;

- creation of a functional diagram on the
hierarchical agglomerative clustering algorithm basis
that represents system variability and composes the
foundation of the domain model (DM).

Ontology

NLP technigues

Similarity measures

Clustering and mining
techniques

Artefacts Artefacts parsing

Behavioral
similarity
calculation

Requirements Design Parsed artifacts

Test cases

Feature diagram

Feature di
creation eature diagram

Similarity matrix

Fig. 4. SOVA tool basic functionality [17]

A technological scheme to implement
the proposed approach

Based on the above-mentioned methodologies and
CASE - tools, the knowledge elicitation process can be
automated to increase efficiency of SPL development in
the following way:

— construction of problem and domain space
using experts (users) and domain experts (technical,
social and economic) interviews;

— RG creation for certain aspects and contexts
based on analysis of the constructed space;

— analysis of the obtained results, identification
of similar, different, and variable components and
functional characteristics;

— construction of variable FODA — model using
semantic ontology approach and user-stories, received
from the phase of knowledge elicitation, as a basis;

— applying of received feature-oriented domain
analysis — model in XML format in the further

42

ISSN 2522-9052

CyuacHi inpopmaniiiai cuctemu. 2020. T. 4, Ne 4

development phases.

Fig. 5 shows the developed technological
procedure in the form of IDEF0 notation diagram [18],
which represents the whole automatization process of
expert knowledge handling in the Domain Analysis
phase of FLC.

The proposed procedure consists of 2 functional
blocks (FB).

Repertory
Grid Method
L d
Expert
— Interviews __| Knowledge
{UaD) elicitation
All List of user
Iy £ stories (XML}
GridSuite
Domain
EXpErts

According to the rules of IDEFO notation, each
FB, namely All “Knowledge Elicitation” and A12
“FODA — model Construction”, has four interface types:
“Input”, “Output”, “Control” and “Implementation
mechanism”. This allows to represent the connection of
all resources: inputs, models, methods, algorithms,
experts and CASE - tools, that are needed for
automatization of knowledge handling process.

Domain
FODA Method
< s Ontology
¥ ¥
FODA-model FODA - model
> construction description g
AlZ
f t
XML SOVA
Parser

Fig. 5. The elaborated IT - solution for the combined usage of GridSuite and SOVA tools

The given scheme includes control interfaces and
implementation interfaces. At the input of knowledge
elicitation process, we receive experts’ interviews
(UoD), which are generated using RG method, domain
experts’ knowledge and GridSuite tool. As the output
we get a list of user-stories [19] in XML format, that
serves as an input for the next process of FODA —
model construction. This process is carried out with the
semantic ontology method and FODA methods, using
SOVA tool for the variability graph creation, domain
experts’ knowledge and XML - parser for input
handling.

As the result, at the output of the last process we
receive the description of FODA model in XML format,
which can be used on the further phases of SPL
development.

Tool installation issues and testing results
in the development of “Smart — Home”
systems

The full version of the GridSuite tool is not free, but
for the basic functional properties testing it’s possible to
install a trial demo-version, which provides the
functionality for RG building, editing and complete
analysis [15].

For the SOVA CASE - tool usage, the next steps
have to be done:

- install the Protégé tool [20], which is a free
ontological editor and open source framework for
creating intelligent systems and building knowledge —
based solutions;

- load additional PG ETI SOVA plug-in to work
with SOVA tool [21];

- install additional HermiT OWL plug-in which is
needed to determine, whether the created ontology is
consistent or not and, also, to determine the connections
between its elements, properties and axioms;

- activate the PG ETI SOVA that is a visualization
tool for the construction of variability ontology graph
with elements and their functional properties.

The RG construction begins with
interviews handling.

The work will be demonstrated on a small PS
dimension (4x4) for the “SHS” domain for the social
context of the PS. To construct RG, an arbitrary range of
values is needed to be selected within which, depending
on the context, the need for functional properties is
estimated.

As a rule, values from 1 to 5 are selected, where 1
indicates that in the given context functionality is
performed for the device, specified on the RG’s left side;
5 — for the device, specified on the RG’s right side.
Values from 2 to 4 indicate the feature variability.

Besides, for the RG, elements of the corresponding
context and constructs (certain functional devices’
properties of the SHS system) in the bipolar
contradistinction form are needed to be specified.

After RG creation, it becomes possible to analyze
the obtained data through the computer cluster analysis
instrument that automatically changes the RG to
eliminate contradictions and allows to inspect the
similarities, differences and variability of elements and

experts’

43

Advanced Information Systems. 2020. Vol. 4, No. 4

ISSN 2522-9052

constructs visually and in percentage.

Fig. 6 shows the result of the RG cluster analysis in
the PS based on the social context. Elements of the
presented RG are the options of user activity, namely
“Sleeping”, “Exercising”, “Leaving the house”, “Rest”,
which in one or another way affect the need (or lack of it)
for the certain usage of the devices’ functionality.

Similar features for “Sleeping” and
“"Getting in bed”

‘ ;
e |

=
o

s | 8|3

Temperature should be lower (in summer) 1 1 5 5
Soft music can be played 2 5 5 5
Light should be turned on 5 5 5 5
Windows should be opened softly 5 5 5 5

Dendrogram Grid: Uers's requiments based on socialfuser context - Client:User

Constructs of the RG are the functional properties of
the devices in the bipolar form, namely “TV should be
turned on / TV should be turned off”, “Brightness of the
light should be higher / Brightness of the light should be
lower”, “Don’t notify about the movement inside / Notify
about the movement inside”, “Increase the volume of
audio speakers / Decrease the volume of audio speaker”.

Similar features for “Not at home” and
“Leaving house”

100 90 80 70 60 SO 40
L L L 1 1 1 L

0L

Fig. 6. RG cluster analysis, built on the basis of social context for the PS

Analyzing the obtained results, it’s obvious that
the “Sleeping” and “Getting in bed” contexts require the
same or similar features (similarity point), since, based
on the estimations for the given contexts, the features as
“Temperature should be lower / Temperature doesn’t
need to be lower” or “Light should be turned on / Light
should be turned off” are invariable and have the only
use in all conditions: for both contexts only features
“Temperature should be lower” and “Light should be
turned off” are needed. As for the “Soft music can be
played / Soft music needs not to be played” feature in
the context of “Sleeping”, the estimation of two means
the variability of the feature as its usage depends on
every user’s needs and desires. Alike RGs also can be
constructed and analyzed for the economic and
environmental contexts. As the output, in GridSuite tool
we get built RGs with all elements and constructs as a
list of user stories in the XML format.

On their basis or on the analysis of the
dendrograms and percentages of the devices’ similarity/
differences/ variability, it becomes possible to build a
variable FODA — model for the “SHS” domain using
the SOVA tool. The ontology in the above-mentioned
tool is built as follows:

- creation of the
representing RG elements;

- creation of the properties and connections
between classes representing RG constructs.

classes and subclasses

Fig. 7 shows a variable FODA — model built with
the SOVA tool on the basis of GridSute tool results.

The presented ontology graph elements have the
following semantical meaning [20, 22]:

- the round node T is a “Thing” class or a root
class, from which we start to build the target ontology.
The “Thing” class defines that each subclass under it is
represented as the real-world entity;

- the rectangular elements like as “Nighttime”,
“Lamp” or “Comfort” are the model entities (or
ontology classes), that represent all RG elements or
conditions, and they have logical connections between
each other;

- the rectangular elements like as
“isUsedCondition” or “is A” represent of the property
existence, and they define if the appropriate entity is a
RG element or a condition;

- the directional arrows show the relationship
between model entities (generalization, composition,
aggregation, etc.).

As the output from the SOVA tool we get a
visualized variable ontology graph and file in the XML
format with the constructed variable FODA — model
description. Fig. 8 represents the obtained result with
the use of the SOVA tool in the form of a description
that can be used for the further stages of SPL
development.

E.g., in [9] is already shown, that basing on a

44

ISSN 2522-9052

CyuacHi inpopmaniiiai cuctemu. 2020. T. 4, Ne 4

given FODA model it is possible to generate a target
source code framework with a predicted reusability

[1
Mighttime

JisUsedContidion

coefficient value, and this approach is exactly useful for
SPL development.

J:isUsedContidion

Fig. 7. Variable FODA — model for the “Smart — Home system” domain

</owl:0ObjectProperty>

</owl:0ObjectProperty>

<l-- http://www.semanticweb.org/shevk/ontologies/2020/4/untitled-ontology-40#isA -->

<owl:0ObjectProperty rdf:about="&untitled-ontology-4@;isA">
<rdfs:range rdf:resource="&untitled-ontology-4@;Audio_Speaker"/>
<rdfs:domain rdf:resource="&untitled-ontology-4@;Device"/>
<rdfs:range rdf:resource="8&untitled-ontology-4@;Lamp"/>
<rdfs:range rdf:resource="&untitled-ontology-4@;Motion_Sensor"/>
<rdfs:range rdf:resource="&untitled-ontology-4@;TV"/>

<!-- http://www.semanticweb.org/shevk/ontologies/20208/4/untitled-ontology-4@#isUsedContidion -->

<owl:0ObjectProperty rdf:about="&untitled-ontology-4@;isUsedContidion">
<rdfs:range rdf:resource="&untitled-ontology-4@;Always"/>
<rdfs:range rdf:resource="&untitled-ontology-4@;Comfort"/>
<rdfs:range rdf:resource="&untitled-ontology-4@;Daytime"/>
<rdfs:domain rdf:resource="&untitled-ontology-4@;Device"/>
<rdfs:range rdf:resource="&untitled-ontology-40;Need"/>
<rdfs:range rdf:resource="8&untitled-ontology-4@;Nighttime"/>
<rdfs:range rdf:resource="8&untitled-ontology-4@;Sometimes"/>
<rdfs:range rdf:resource="8&untitled-ontology-40;WeatherDependence”/>

Fig. 8. FODA — model description in the XML format

Conclusion and future work

In this research the actual scientific and technical
problem: the development of software product lines
(SPL) with respect to variability issues at all stages of
their full life cycle (FLC) is considered, especially using
the recognized framework for FLC of SPL proposed by

K. Pohl. To analyze this problem with respect to the
both modeling and technological issues, the logical
mapping of the main FLC phases to the structured
scheme one of wide-used software agile-development,
namely to the Scrum method is done.

As the result of this mapping approach the
conclusion is made, that the special attention has to be

45

Advanced Information Systems. 2020. Vol. 4, No. 4

ISSN 2522-9052

paid to such most complex and weak-formalized stages
in the FLC as a domain analysis (DA) stage. It is
mentioned, that to perform this process in an effective
way some methods and tools of expert knowledge
handling can be used, and in this research the repertory
grids method is motivated chosen. To support the usage
of this method in DA the proposal is made to elaborate
the special IT-solution using some already available
CASE-tools. The essentials functionality features of two
such systems: GridSuite and SOVA (Semantical and
Ontological Variability Analysis) are considered, and

basing on this result, the integrated IT-solution is
elaborated and presented in form of the IDEFO diagram.
Finally, the main technological facets of these tools
installation are studied and tested, and the test-case to
show the possibility to generate the FODA-variability
model for the “Smart-home” application domain is
provided.

As the next step to be done in our research we are
going to develop the special software components to
apply a collection of quantitative metrics for quality
assessment of the generated domain models.

—_

REFERENCES

Sommerville, I. (2015), Software Engineering, 10™ edition, Addison-Wesley, NY.

2. Pohl, Klaus, Bockle, Giinter, van der Linden, Frank J. (2005), Software Product Line Engineering: Foundations, Principles,
and Techniques, Springer, 467 p.

3. Lavrishcheva, K. M., Koval, G.I., Babenko, L.P., Slabospytska, O.O. and Ignatenko, P.P. (2011), New theoretical bases of
technology production of software systems families in the context of generating programming: monograph, Institute Program
Systems, NAS Ukraine, Kyiv, 277 p. (in Ukrainian).

4. Tiihonen, Juha, Raatikainen, Mikko, Mylldrniemi, Varvana and Mannistd, Tomi (2016), “Carrying Ideas from Knowledge-
based Configuration to Software Product Lines”, Proceedings of the 15th International Conference on Software Reuse,
Cyprus, June 5-7, , pp. 55-62.

5. Methods of knowledge acquisition automatization in expert systems: classification, current state, comparative analysis,
International scientific-practical journal “Software products and systems”, available to: http://www.swsys.ru/index.php?
page= article &id=1187&lang=.docs (in Russian).

6. Capilla, R., Bosch, J. and Kang, K. (2013), Systems and Software Variability Management, Springer, Berlin.

7. Karagiannis, D., Mayr, H.C. and Mylopoulos, J. (2016), Domain-Specific Conceptual Modeling: Concepts, Methods and
Tools, Springer, Berlin.

8. Tune, N. and Millet, S. (2015), Patterns, Principles And Practices Of Domain-driven Design, 1st ed., John Wiley & Sons.

9. Tkachuk M., Gamzaev R., Martinkus 1., Sokol, V. and Tovstokorenko, O. (2018), “Towards Effectiveness Assessment of
Domain Modelling Methods and Tools in Software Product Lines Development”, Enterprise Modelling and Information
Systems Architectures — International Journal of Conceptual Modeling, Vol. 13, Germany, pp. 190-206.

10. Gamzayev, R.O., Tkachuk, M.V. and Shevkoplias D.O. (2020), “Handling of Expert Knowledge in Software Product Lines
Development with Usage of Repertory Grids Method”, Bulletin of the V.N. Karazin Kharkiv National University:
‘Mathematical Modeling. Information Technologies. Automated Control Systems, No. 47, pp. 13-24.

11. Eleutério, J. (2017), A Comparative Study of Dynamic Software Product Line Solutions for Building Self-Adaptive Systems,
30 p.

12. Kumar, Manish and Dwivedi, R.K. (2020), Applicability of Scrum Methods in Software Development Process, available at:
https://ssrn.com/abstract=3610759 or http://dx.doi.org/10.2139/ssrn.3610759.

13. Sangeeta, D. and Seok-Won, L. (2015), From Requirements Elicitation to Variability Analysis Using Repertory Grid: A
Cognitive Approach, Proceeding of RE, Ottawa, ON, Canada, pp. 46-55.

14. (2020), GridSuite, Repertory Grid Software, 2003-2020, available at: https://www.gridsuite.de/45623/41431.html.

15. Fromm, M. (2017), Manual for GridSuite 4 and 4+, 54 p.

16. Thorsten, Berger, Marsha, Chechik, Timo, Kehrer and Manuel, Wimmer (2019), “Software evolution in time and space:
unifying version and variability management”, Report from Dagstuhl Seminar, 19191, May 5-10, p. 30.

17. Ttzik, N. and Reinhartz-Berger, 1. (2014), “SOVA - A Tool for Semantic and Ontological Variability Analysis”, CAiSE’14
Forum, CEUR Workshop Proceedings 1164, pp. 177-184.

18. Lavrishcheva, K. M. (2008), Software Engineering, IPU, Kyiv, 319 p., available at:

URL: http://csc.knu.ua/uk/library/books/lavrishcheva-6.pdf (in Ukrainian).

19. Lucassen, G., Dalpiaz, F., Martijn, J. and Brinkkemper S. (2016), “Improving Agile Requirements: the Quality User Story
Framework and Tool”, Requirements Engineering, Vol. 21 pp. 383-403.

20. (2020), Protége System, Stanford University, available at: https://protege.stanford.edu/products.php#desktop-protege.

21. (2020), Simple Ontology Visualization API, Jean-Philippe Lang, 2006-2013, available at:
https://kask.eti.pg.gda.pl/redmine/projects/sova/wiki/Main Page.

22

. (2020), SOVA-Visualization symbols, Appendix C, available at: https:/protegewiki.stanford.edu/wiki/File:SOVA-Symbols.pdf.

Received (Hapniiinua) 10.09.2020
Accepted for publication (ITpuitasita no apyky) 04.11.2020

BI1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

I'am3aeB PyCTaM OJ'IeKC&HleOBl/l‘I — KaHgujaar TEXHIYHHUX HayK, JOLCHT, AOKTOpPAaHT Kacbez[pn MOJZCIIIOBAHHA CHUCTEM i

TeXHOJOrii, XapKiBcbKHii HallioHanbHUi yHiBepcurer iMeHi B. H. Kapasina, Xapkis, YkpaiHa;

Rustam Gamzayev — PhD, Asc. Professor, Doctoral Student of the Department of Systems and Technology Modeling,
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine;

e-mail: rustam.gamzayev(@gmail.com; ORCID ID: https://orcid.org/0000-0002-2713-5664.

46

ISSN 2522-9052 CyuacHi iHdopmaniiini cucremu. 2020. T. 4, Ne 4

Tkauyk Mukona Bsiuyeca1aBoBMY — JIOKTOp TEXHIUYHMX Hayk, mpodecop, 3aBimyBau kadeapy MOICITIOBAHHS CHCTEM 1
TeXHOJOrii, XapKiBCbKHii HallioHanbHUi yHiBepcurer iMeHi B. H. Kapasina, Xapkis, Ykpaina;
Mykola Tkachuk — Dc. of Techn. Science, Professor, Head of the Department of Systems and Technology Modeling,
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine;
e-mail: mykola.tkachuk@karazin.ua; ORCID ID: https://orcid.org/0000-0003-0852-1081.

Ilesxomusc Jdap’s OsexkcanapiBHa — CTyleHTKa Ka(eapu MOJIEIIOBAHHSA CHUCTEM 1 TEXHONIOriH, XapKiBCbKUH HalliOHAJIbHUI
yHiBepcurer imMeni B. H. Kapasina, Xapkis, YkpaiHa;
Daria Shevkoplias — student of the Department of Systems and Technology Modeling, V. N. Karazin Kharkiv National
University, Kharkiv, Ukraine;
e-mail: shevkoplysdarya23@gmail.com; ORCID ID: https://orcid.org/0000-0001-5870-771X.

3HaHHs-OpieHTOBaHA iH(opMaNiiiHa TeXHOJIOTisI 1A YIPABJIiHHASA Bapia0beJbHIiCTIO
HA eTalli IOMEHHOI0 aHAJI3Y Y po3po0iui nporpaMHoro 3aée3ne4yeHHst

P. O. I'am3aes, M. B. Tkauyk, J[. O. llleBkormsic

AnoTtanis. Ilpeqverom nanoi pobOTH € NOCIIHKEHHS, OB’ I3aHUX 3 YIPABIIHHAM BapiaOeIbHICTIO Ha eTall JOMEHHOIO
aHamizy ([JA) y moBHomy xurreBomy 1wk (IDKI) nimifikm nporpamuux mnpoxykriB (JIIIIT). OcHoBHOI0 MeTor0 Iiei
JIOCTITHAIIBKOT POOOTH € po3poOka HOBOI iH(pOPMAIiHOI TEXHOJOrii, 3aCHOBaHOi Ha 3HAHHAX, JUIS MIATPUMKH YIPABIiHHSI
BapiabenbHicTio B JIA sk y HalickianHimoMy Ta cnadko-opmanizoBanomy erami B TDKL] JITITT. [yt nocsrueHHs wiei Metu Oynn
copMynbOBaHi Ta BUpILIEHI HACTYIHI 3aBJaHHsA: IpoaHaii3yBaTu npobiemu BapiabenbHocti y IDKI] Ha npukiazni cydacHoro
IiIXOy 10 THYYKOi pO3poOKH - Y METOHONOrii Scrum; BUBYHTH, SIK METOAW OOPOOKH 3HAHb MOXKYTh OyTH BHKOPUCTaHI IS
MIATPUMKH JISUIBHOCTI KOPUCTYBauiB Ta EKCIEPTIB IOMEHIB Ha erami JIA 3 ypaxyBaHHSAM MOJIEJIIOBAaHHS BapiaOelbHOCTI
nporpamMHoro 3abesneueHHs; 3poouru MoruBoBaHuii Bubip CASE-iHcTpymeHTiB i1t po3poOku BinnoigHoro IT-pimenHs mis
MATPUMKH 3HaHHSA-OpieHTOBaHOrO B JIA; mpexncraButu 1e IT-pilieHHs y cTpykTypoBaHii (opMi, pO3IIISIHYTH JEsIKi MUTAHHA
HOro BIPOBA/UKEHHs Ta OOTOBOPUTH IIEpIIi Pe3yJbTaTH TeCTyBaHHA. MeTOaH, 10 BUKOPUCTOBYIOTHCA B LIbOMY JOCHIPKCHHI:
poOIEMHO-0Pi€HTOBAHUIM MiXiJ 10 PO3pOOKM HPOrpaMHOro 3a0e3leueHHs; METOJ PelepTyapHHUX CITOK Ta OHTOJOrIT uls
00poOku 3HaHb ekcrnepriB, Hortauis IDEFO mna crnenmdikanii 3amnporonoBanoro IT-pimeHHs, opieHToBaHui Ha (yHKIil
nomennnit aHainiz (FODA) mis MmonenroBanHs BapiabenbHocTi B JIIII. BuecHOBKH: pe3ynbTaT IIbOro TOCIIKEHHS ITOKa3aly,
mo ocobnuBa yBara nosuHHa Oyru npuniiena J{A B IDKLI, 30kpema, i3 3acTOCyBaHHSIM 3HaHHS-OPIEHTOBaHUX MeTOAIB. J{iis
e(eKTHBHOI0 IPOBECHHS LIbOT'O MIPOLIECY MOTHBOBAHO O0PAaHO Ta NPOaHalli30BaHO MEPEBard METO/Y perepTyapHUX CITOK JUIS
00poOKH eKcrepTHUX 3HaHb. [aBTOMaru3alii 3acTocyBaHHS LbOro MeTony B JIA 3anponoHoBaHo po3pobutu BinnosinHe IT-
pillleHHs, BUKOpUCTOBYrOuM aesiki Bxke poctynHi CASE-iHcTpymeHTH. Po3risHyro ocHOBHI 0coOuMBOCTI (hyHKIIOHAJIBHOCTI
nBox Takux cucreM: GridSuite Ta SOVA (ceMaHTHYHMI Ta OHTOJIOTIYHUI aHAJ3 3MIHHOCTI), i HA OCHOBI IIbOrO pe3yJbTaTy
po3pobiene Ta npezcrasiene inrerpoBane IT-pimenns y gopmi niarpamu IDEF0. Po3riisiHyro OCHOBHI TE€XHOJOTIYHI acHEeKTH
BCTAQHOBJICHHS IIUX IHCTPYMEHTIB, a TAKOXK HA/IA€ThCS TECTOBUH IIPUKIIAL, KU [TOKAa3ye MOXIINBICTb T'€éHEPYBaHHS BapiaOeIbHOT
FODA Mopneui uist 3acTocyBaHHs B po3poOkax cucreM «Po3yMHHI JiM».

Kaw4yoBi ciaoBa: 3HaHHA, IporpaMHe 3a0e3leUeHHS; JKUTTEBUH IMKI;, JOMEHHHMH aHaii3; BapiaOeJIbHICTh; METOJX
penepTyapHUX CiTOK; OHTOJIOTIS; iH(popMamiiiHa TeXHOOTis.

3HaHHe-OPHEHTHPOBAHHAsI HHQOPMAIMOHHAS TEXHOJIOTHS Ui yNPaBJIeHHs] BapHabeIbHOCTBI0
HA JTale JOMEHHOr0 aHAJIM3a B Pa3padoTKe NPOrPaMMHOI0 OK0eCIIeYeHHs

P. A. T'am3aes, H. B. Tkauyk, JI. A. lleBkormusic

AuHotanus. IIpeamMeroM naHHOH paboOTHl SIBIAETCA HCCIENOBaHHE BOIPOCOB, CBA3AHHBIX C YIPABICHUEM
BapraleNbHOCTHIO Ha JTare JoMeHHoro aHainm3a (JA) B momxoM sxu3HenHoM 1mkite (DKL) minelikn nporpaMMHBIX IPOIYKTOB
(JITIIT). OcHOBHOI WeIBI0 3TOH HCCIEOBATEIbCKOW PabOoThI sABIsETCS pa3paboTKa HOBOH HMH(OPMALMOHHON TEXHOJIOTHH,
OCHOBaHHOW Ha 3HAHWSIX, UL MOJIEP)KKH YIIPaBICHUs BapuaGelabHOCTBIO B JIA Kak B CIOXKHOM M ci1abo-(hOopMann30BaHHOM
srane B IDKI] JITIIT. [nsa noctukeHus 3Toi Leau Oblin chOpMYITHUPOBAHbI M PELICHBI CJIeAYIOIHe 3aJa4H: IPOaHAIN3UPOBATh
npobnemer BapuabensHocTn B IDKL] Ha mpuMepe cOBpeMEHHOro moaxona K rHOKOH pa3paboTKu - B METONOJIOTHH Scrum;
U3Y4UTh, KaK METOIbI OOpaOOTKM 3HAHWH MOrYT OBbITh HCIIOJB30BaHbl UL IOANEPKKH JESATEIbHOCTH MOJb3oBaTeneil u
9KCIIEPTOB JIOMEHOB Ha 3rane JIA C ydeToM MOZAEIUPOBAHHS BapHaOebHOCTH IPOrPAMMHOIO OOECHEdEHHMs; CHEeNaTh
MoTuBHpoBaHHbIi BbIOOp CASE-mHCTpyMEHTOB mis pa3paborku coorsercrByromero WT-perieHus ajis HOLICPIKKH 3HAHMSA-
opueHTHpoBaHHOrO B JIA; npezncraButh 310 U T-peiienue B CTpyKTYpHPOBaHHOH (hopMe, paccMOTPETh HEKOTOPbIE BOIPOCH €TI0
BHEJIPEHUs M OOCYIUTH IEPBbIC PE3yNbTaThl TECTHUPOBaHUS. MeTOABI, UCIONb3yeMble B 3TOM MHCCICIOBAHMH: IIPOOIEMHO-
OPUEHTHUPOBAHHBIH IOAXOJ K pa3paboTKe NPOrpaMMHOro OOECIICYEeHHs; METOZ PENepTYapHbIX ceTeil M OHTOJIOTUMH Ul
obpaborku 3HaHMil 3kcreptoB, HoTaims IDEFO nns cnenuduxamuu npennoxkeHHoro MT-pemieHns, opueHTHPOBAaHHBIN Ha
¢bynkuun nomennsiit anamuz (FODA) s monenupoBanus BapuabenbHoctd B JIIIII. BbIBOABI: pe3yibTaThl 3TOrO
HCCIIEIOBAaHMS ITOKA3AJIM, YTO 0c000e BHUMaHKE JNOJDKHO ObITh yneneHo JIA B IDKL], B yacTHOCTH, C HCIIONB30BaHUEM 3HAHHE-
OPUEHTHPOBAHHBIX MeTOHOB. st 3()peKTHBHOrO NPOBEASHUs 3TOrO Hpoliecca MOTUBUPOBAHO M30paH M IPOAaHAIU3UPOBAHBI
MPEUMYIIECTBA METO/la PElepTyapHbIX CeTel Ul 00paOOTKH 3KCNEPTHBIX 3HaHWH. [aBTOMAaTW3alMy NPUMEHEHHs STOro
merona B JIA mpemioxeHo paspaborars coorBercTByromiee WT-pemienus, ucrnons3yst Hekoropsle yxke nocrynHsl CASE-
HMHCTPYMEHTBL. PaccMOTpEeHBI OCHOBHBIE OCOOGHHOCTH (YHKIMOHANBHOCTH IBYX Takux cucrem: GridSuite u SOVA
(ceMaHTHYeCKUH M OHTOJIOIMYECKHH aHaJM3 CMEHHOCTH), U HAa OCHOBE B3TOr0 pe3ysbTara pa3pabdOoTaHHOE U IPEACTaBICHO
unrerpupoBanHoe UT-pemenne B ¢opme nuarpammbel IDEF0O. PaccMoTpeHBI OCHOBHBIE TEXHONOTMYECKHE aCIHEKTHI
YCTaHOBJIEHHA JTHX HHCTPYMEHTOB, a TaKXKe TIpPEJOCTaBIsIETCS TECTOBBIM IPUMEP, MOKA3bIBAIOMIMN BO3MOXKHOCTD
reHepupoBanus BapuadenbHoit FODA Mozeny a1 npuMeHeHus B pa3paboTKax cucTeM «Y MHBIH JIOM».

KawueBblie cioBa: 3HaHUs; MPOrpaMMHOC 06GCHG‘~IGHI/IG; JKA3HCHHBIN THKII; Z[OMGHHBIﬁ aHallu3; BapI/Ia6eJ'lLHOCTB;
METOA pEHEPTYapPHBIX PECUICTOK; OHTOJIOI' U] I/IHq)OpMaI_II/IOHHaH TCXHOJIOI' M.

47

