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TO THE QUESTION OF CONSTRUCTING THE REGION OF ALLOWABLE VALUES

OF VARIABLE PARAMETERS OF A DIGITAL STABILIZER
OF A MOVABLE OBJECT

Abstract. Solving the problems of analysis and synthesis of closed digital systems for stabilization of movable objects is
associated with significant difficulties. One of the possible ways to solve the problem is the transition from a mathematical
model of a continual-discrete closed stabilization system to an approximate mathematical model of a discrete closed system
using infinite matrix series containing the own matrix and the control matrix of the continuous part of the system, as well as
the quantization period of the discrete part. Using the example of a closed digital stabilization system for a space stage of a
solid-propellant carrier rocket flying in an airless space with a marching engine turned on, the problem of constructing
stability regions of a closed digital stabilization system in the plane of variable parameters of a digital stabilizer was solved
and a comparative analysis of these regions was carried out for various numbers of members of matrix series taken into
account and different values of the digital stabilizer quantization period.

Keywords: continual-discrete stabilization system; digital stabilizer; stability region of a closed discrete system;

stabilizer quantization period.

Introduction

Problem statement. Let perturbed motion of a
movable object is described by vector-matrix differential
equation

X(t)=A4-X(t)+B-U(t), (1)
where X (¢) is the n-dimensional state vector of the

object; U () is the m -dimensional control vector; 4 is

the object's own matrix of size nxn; B is the control
matrix of size nxm.

Assume that the digital stabilizer realizes
stabilization algorithm
U[nT]|=K-X[nT], )

where K is the matrix of constants of algorithm (2) of
size mxn , moreover some columns of the matrix K are
zero, corresponding to the unmeasured components of the

vector X (7).

The problem of parametric synthesis of the digital
stabilizer (2) consists in finding the values of the matrix
elements K that ensure the stability of the closed system
(1), (2) and deliver the required quality of the stabilized
processes to the closed system (1), (2).

To solve the problem of parametric synthesis of
digital stabilizers of complex high-dimensional objects,
an algebraic method is used, based on the use of Optimi-
zation Toolbox software package MATLAB or Minimize
software MATHCAD [1,2], with the help of which the
solution is found in the region G, representing the stabil-

ity region of the closed system (1), (2) in the space of
variable constants of the algorithm (2). For this, in
accordance with the work [3], from the ordinary vector-
matrix differential equation (1) one passes to the vector-
matrix equation in finite differences

X[(n+)T]=® - X[nT]+H-U[nT],  (3)

in which the matrices @ of size nxn and H of size
nxm respectively, are determined by the formulas

1 ..
d=3 AT (4)
i=0""

R <1 NN S
H_E)LiJrl)!AT }B. (5)

The number of taken into account members of the
matrix series (4) and (5) depends on the value of the
quantization period T .

Modern onboard digital computers, used for infor-
mation processing in complex movable technical objects,
perform, in addition to generating control signals, many
other functions. First of all, these functions are associated
with digital filtering of the output signals of sensors noisy
with high-frequency interference, analysis of the techni-
cal state of various systems and assemblies that make up
the object, solution of navigation problems and decision-
making problems by the crew members of a moving ob-
ject. The combination of these problems leads to the fact
that the value of the quantization period of the on-board
computer is limited from below 7" by the value below
which this value cannot be chosen. In modern on-board
computers of movable military objects, this value is
T"= (0,002 — 0,01) c. Let us substitute relation (2) into the
right side of equation (3). As a result, we obtain the vec-
tor-matrix difference equation of the closed digital stabi-
lization system

X[(n+1)T]=[®+H-K] X[nT]. (6)

Then the characteristic equation of the closed digital
stabilization system is written in the form
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det[®+H-K-E-z]=0, (7)

where z is complex variable, Z is transformation of the
lattice function.

Using the characteristic equation (7) for a given
value of the quantization period 7', it is possible to con-
struct the stability region of a closed digital stabilization
system G in the space of variable stabilizer constants
(2) [4]. It is clear that the region G;, depends not only on
the value 7', but also on the number of considered mem-
bers of the matrix series (4) and (5).

The purpose of this article is to study the influence
of the number of taken into account members of the
matrix series (4) and (5) on the stability region G, of a
closed digital stabilization system of a moving object at
various values of the quantization period of the on-
board computer.

Main material

This purpose is carried out on the example of con-
structing stability regions of a closed digital stabilization
system for a cosmic stage of a solid-propellant carrier
rocket flying in an airless space with a marching engine
turned on. The equations of angular disturbed motion of
such a stage have the following form [5, 6]:

(1) = ay5-5(0);

5 : ®)
T78(1)+ 10 (1) +8(¢) =k-u(t),

where () is the yaw angle of the stage; 8(¢) is the
angle of deviation of the axis of the marching engine
from the longitudinal axis of the rocket; u(z) is the
control signal generated by the stabilization system; &
is the coefficient of proportionality.

As a first step, we assume that stage stabilizer is

analog one, realizing the stabilization law in the form of
the relation

u(t)=ky(t)+koy(t). )

Let us introduce into consideration the state vector
of the stabilization object

207 v
w()| ¥
O 7|5
x ()] |8(2)

and write the differential equation of the perturbed

motion of the stabilized object in the form
X(t)=A4-X(t)+B-u(t), (10)

where matrices 4 and B are equal

! 0 0 F o ]
00 as O 0
A=|0 0 0 1 - B=| 0 |
k

00—%—% )

I R |5

Relation (9) can be written in vector-matrix form
u(t)=K-X(t), (11)
where the matrix of the gain coefficients K is equal
K=[k; ky 0 0].

Then, taking into account (10) and (11), the equa-
tion of the perturbed motion of the closed stabilization
system is written

X(t)=[4+B-K]X (1), (12)

and the characteristic equation of the closed system (12)
is written in the form

det[A+B-K—-E-s]=0, (13)

where s is complex variable of Laplace transformation.
Substituting the matrices 4, B and K, into the
characteristic equation (13), and disclosing the determi-
nant, we have
4. L 3 1 5 k k
ST+ +—5" —ays—kys—ays—k =0.(14)
le le 1\ le \ T12
In the characteristic equation (14), we make a
substitution s = jw, select the real and imaginary parts
in the obtained relation, equate them to zero, and solve
the resulting system of two algebraic equations with
respect to the variable gains & and &, :

2.2 2
klzyi(’) O)Z—L' k2=_T20)
awgk 7]2 a\ugk

(15)

Relations (15) will be used below when comparing
the stability regions of continuous and discrete
stabilizers.

Let's move on to considering a digital stabilizer
that implements the stabilization algorithm (2) for two
options. In the first variant, the matrices (4) and (5) are

represented in the form:
®=E+AT; H =BT, (16)

and in the second — in the form:
1 1
®= E+AT+EA2T2; H= BT+EABT2. (17)

For the first variant, the characteristic equation of
the closed stabilization system (7) with the substitution
of matrices (16) into it is written

1-z T 0 0
0 I-z  ayT 0
0 0 1-z T =
1 T
ile ikzr ——T l-z--2T
72 72 72 72
L 41 1 1 1 i

moreover
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T 1 k k
M =21 4 =—=T% M=a,5—5kT; 4 =-a,5—kT". (19)
i i i i
For the second variant, equation (7), upon substitution of matrices (17), takes the following form
_ . , -
1-z T EaW5T 0
0 1-z awST aWSTz/Z
2
T =
lik]Tz lszz 1_Z_T_ -2 72
272 2 217 21 (20)
k. Tk k . Tk T: T: 1 T3
e L T L e R e -
7 2p (i o1, S ¢

—(1=2) A (=2 + A (=2 A (1-2)+ A =,

moreover

2
T
Alllz_l Ty+T|1--2 ||;
2 2
T T

2
3 2 2
T T T T
A =—| BT 1-Z ||+ 1- 2T -
21 T n 21

T4 7
—a Sk_kl —da 5k kz
4 4le v ]2
73 T
awsk—z 1——22T k29
27T 27T
4 2
T( T
A =q sk Ty +=|1-"2 ||k +
A4 Tl4 2 712
2 (21)
T T T4
taygh—| 1-—2T | ky +a,sh—k +
v le[ 272 J v 212

For small values T, determinant (20) degenerates
into determinant (18), and the values of the coefficients
of equation (20) determined by relations (21) approach
the values of the coefficients of equation (18)
determined by relations (19).

A closed digital stabilization system is stable if all
roots of its characteristic equation (18) or (20) are located
inside a circle of radius that equal one, of the complex
plane z (Schur-Kohn criterion [7]).

To construct the stability regions of a closed digital

stabilization system in the plane of variable constants
(ki,ky), we use the W -transformation method [8, 9],
according to which the bilinear transformation

_1+W
1-w

defines a conformal mapping of a circle of unit radius of
the complex plane z to the imaginary axis of the com-
plex plane w . Replacing (22) in characteristic equations
(18) and (20), we obtain new characteristic equations
with respect to a complex variable w, in relation to
which we can use all the provisions of the theory of sta-
bility of continuous dynamical systems, including the D-
partition method for constructing stability regions of sys-
tems in the space of variable parameters.

In accordance with formulas (21), the coefficients

z

(22)

of the characteristic equation (20) Ag and A;I
represent in the form:

m_o 0 m, . 0 1 11
Ay = Ao+ Ayiky + Appky s Ay = A3jky + A3pky,

where

2
3 2 2
T T T
7 RPN S N | S O 6 )
4 2 2 2
o7, i?)| 12 2
Ay =—aysk-T[(472);

4 =—aysk T/ (217 ) (2-7 13 7 )

5 2
. 21 2\ 5 C(23)

1
L :
? +ﬁ[ o J

The characteristic equations (18) and (20) of both
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considered variants will be reduced to a single form

(1=2) 4 4] (1=2)+ | b + Abiky + bk [

s 1 (24)
x(1-z) +[A3lkl +A32k2J(1—z)+A£ 0.
for variant I and
(1= 2 A (1=2)+ | 43 + 431y + A3bky |
(25)

x(1=z) '+ ik + Ay [(1-2)+ 43 =0.

quist Bapuanta II. [Ipu atom koadduimeHTs! ypaBHEHHs
(24) cocrapmsor: for variant II. In this case, the
coefficients of equation (24) are:

2
1. L. a0 _T° 1 ol i
Ay =——=T; Ayo=—5; 4 =0; A =0;
I I 26)
I oyl k 3. 1 4
A31 =0, A32 =aw5 FT 5 A4 =—aw5 FT k].

1 1

We omit the superscripts in the coefficients of the
characteristic equations (24) and (25), using the universal
form of representation of each of the equations

(1—2)4+ A] (1—2)3+[A20 + A2]k1 +A22k2]>< (27)
X(1—2)2+[A31k] +A32k2](1-2)+144 = 0

In the characteristic equation (27), we replace (22).
As a result, we obtain a new characteristic equation of
the closed-loop digital stabilization system with respect
to the complex variable w :

16w +84w* +4(dyg + 4y kg + Axaky ) +
+2( Ay + Agoky )W+ Aghgw? —8 4w —
—8( Ag + Agrky + Ayoky )W — 4 Ak — 8

~6( Ay hy + Agoky )W 4+ 6( Az kg + Ay )W+

4( Aoy + Ayiky + Ayokey ) WP + 6 Ay w? —
~2( Ay hy + Agpky ) w—dAhkyw+ Aghy =0,

In the new characteristic equation (28), we make a
replacement w= jm, select the real and imaginary parts,

equate them to zero. As a result, we obtain a system of
two algebraic equations with two unknowns 4 and &, :

K(T,0)k+L(T,0)ky =M (T,0); 29)
P(T,0)k +0(T,0)k, =N(T,0),
where the corresponding coefficients of system (29) are
determined by the following relations:
K(T,0)= (445 +243, + 44 ) 0* -

—(44y; + 643, +644 )0 + Ay
L(T,0)=(44p + 2437 ) 0" —(44y; + 643, )0*;  (30)
M (T,0)=—(16+84; +445)) 0" + 44007
P(T,0)=(84y; + 64y, + 44, )0* —(245, +44,);

O(T,0) = (849, + 643 )0 —243;

N(T,(D) = —8(14] +A20)0)2.

In accordance with Cramer's rule [10], solutions of
system (29) are written in the form

A A
h=p =y (31)
where the corresponding determinants are equal:
_ K(T’O)) L(T’(,)) ~
“|p(ro) o(re) KTe)OT0)-
—-P(T,0)L(T,);
_M(T’O)) L(T’(,)) ~ )
A= N(T,0) O(T,0) =M (T,0)0(T,0) o)
_N(T,(D)L(T’O))’
_[K(T0) m(To)
L P(T’O)) N(T’(,)) _K(Ta(’))N(T’(,))_

—P(T,0)M (T,0).

Calculation results and conclusions

We choose the numerical values of the parameters
of the stabilization object equal to [11]:

(g5 =—0,2557; ;=0,025;
Ty =0,045; k=0,01 V.

Changing ® from zero to infinity, using relations
(15), we construct the boundary of the stability region of
a closed analog stabilization system (curve 1), and also
using relations (31) and (32) - the boundaries of the sta-
bility regions of a closed digital stabilization system for
the two considered accounting variants the terms of the
matrix series (4) and (5) (curves 2 and 3) for different
periods of quantization of the on-board computer corre-
sponding to Fig. 1-3.

k\l‘/, VA' A
4 x 10
3.5 QQ\
3 T !
U \\&
25 -2\\3\\
) .
)
1 /
0.5 —
) ks V
0 0.5 1 1.5 2 25
X 105

Fig. 1. Construction of boundary of stability region
of closed stabilization system for 7' = 0,001c :
1 — analog system,; 2 — first option; 3 — second option
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Fig. 2. Construction of boundary of stability region
of closed stabilization system for 7' = 0,005 ¢ :
1 — analog system,; 2 — first option; 3 — second option

Simultaneously with the construction of the
boundaries of the stability region, the sign of the de-
terminant A is calculated. If the determinant A is
positive, then the boundary of the stability region is
hatched from the left; if the determinant A is negative,
then the boundary is hatched from the right. In this
case, the hatching is directed towards the inside of the
stability region. Analysis of the above figures allows

k\l‘/, VA' A
x 10
4
is \\ i
3 ~ -
vs \\\ \
) ~—
1.5
2
1 ///
05 /7//
. Y
0 0.5 1 1.5 2 2.5
X 105

Fig. 3. Construction of boundary of stability region
of closed stabilization system for 7 =0,01c :
1 — analog system,; 2 — first option; 3 — second option

e an increase in the quantization period of the
on-board computer leads to a decrease in the stability
region of the closed digital stabilization system of the
cosmic stage of solid-propellant carrier rocket;

e taking into account the terms of the matrix se-
ries containing quadratic terms leads to an increase in
the stability region of the closed digital stabilization
system of the cosmic stage of solid-propellant carrier

us to draw the following conclusions:

rocket.
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Jlo nuTaHHs Npo nodynoBy 00J1acTi 103BOICHHX 3HAYCHD
BapilioBaHuX napamerpiB nugposoro crabdijgizaTopa pyxomoro 06’ekra

€. €. Anekcanzpos, T. €. Anekcanzposa, I. B. Kocrsnuk, . 10. Mopryn

AHoTanisi. PimenHs 3ama4 aHamizy 1 CHHTe3y 3aMKHYTHX Lu(poBuUX cHcTeM crabinmizauii pyxomux 00'eKTiB
MOB'A3aHE i3 3HAYHHMHM TPYAHOLIAMH, 3yMOBJICHUMH THUM, 110 30ypeHuil pyx Oe3nepepBHOI YaCTHHU 3aMKHYTOI CHCTEMH
OIUCYETHCS CHCTEMOIO 3BHYaiHNX NU(EpeHIiaIbHUX PiBHAHB, a (QYHKI[IOHYBaHHs AMCKPETHOI YaCTUHM - aJITOPUTMaMH B
KiHLIEBUX PI3HULAX 1 PI3HULUEBUMHU piBHAHHAMH. OTpUMaHHA XapaKTEPUCTUYHOIO PIBHAHHSA 3aMKHYTOI AUCKPETHOI
CHCTEMH IUIAXOM z-IIEPETBOPEHHs pemriTyactoi QyHkuii, ska Binnosimae nepexinHiii QyHkuii Oe3nepepBHOI yacTHHU
CHCTEMH, sl CKJIAQAHUX OO'eKTiB, IO ONUCYIOTbCA AUGEPEHLIaNbHUMU PiBHAHHAMHM BHCOKOrO IOpPSJIKY, 4acTO HE
MPEJCTaBIAETbCA MOXUIMBUM. OJHUM 3 MOXIMBHX IUISXiB BHUPILIEHHS HNpoOJIEMH € IepeXij BiJ MareMaTH4HOi Mozeli
KOHTHHYaJIbHO-AUCKPETHOI 3aMKHYTOI CHCTeMH cTabimizamnii 10 HaOImKeHoT MaTeMaTHYHOI MOZEIi JUCKPETHOI 3aMKHYTOL
CHCTEMH 3 BUKOPHCTAHHSAM HECKIHYCHHHMX MATPUYHHMX PALIB, IO MICTATH BJIACHY MAaTpPHUIIO i MAaTPULIO KEepyBaHHS
6e3nepepBHOI YACTHHHU CUCTEMH, a TAKOXK HepioJ] KBAaHTYBAaHHS IMCKPETHOI YacTHHU. [Ipyu IbOMY TOYHICTb 3aJau aHaMIi3y i
CHHTE3y 3aMKHYTOI cHcTeMM cTaliii3auii BU3HAYa€ThCsS KiNBKICTIO BPaXOBaHMX 4JIEHIB MaTpuuHUX paniB. Ha mpukmani
3aMKHYTOi IU(POBOi cucTeMH cTadimizalii KOCMIYHOrO CTYNEHsS TBEPAONAIMBHOI PAKETH-HOCIA, WO 3AIMCHIOE IOJIT B
OE3MOBITPSIHOMY TPOCTOpPiI 3 BKJIIOYEHHM MapUIOBUM [BUTYHOM, BHpillleHa 3ajgada ImoOyqoBH olsiacted CTiHKOCTi
3aMKHYTOi IIM(pOBOI cucTeMH crabiyizamii B IUTOIIUHI BapifioBaHUX MapaMeTpiB IudpoBoro crabdizizaropa i IpoBeneHO
MOPIBHAIBHUN aHali3 nux obyacTed HpHW pi3HiM KiNBKOCTI BPaXOBaHMX WICHIB MaTPUYHHUX PAAIB 1 PI3HUX 3HAYEHHAX
nepioy KBaHTYBaHHS LM poBoOro crabdinizaropa.

Kaw4yoBi ciioBa: KOHTHHYaJIbHO-IMCKpETHA cucTeMa cralimi3amii; nudpoBuil crabinizarop; obmacTb CTiHKOCTI 3a-
MKHYTOI JUCKPETHOI CUCTEMH; I1epioJl KBaHTYBaHH: cralinizaropa.

K Bonpocy o mocrpoeHus 00J1aCTH JONYCTHMBIX 3HAYEHMI
BapbUPYEMbIX IapaMeTPoB MG POBOro cTaduaIu3aTopa NOABMKHOIO 00bEKTa

E. E. Anekcannpos, T. E. Anekcannposa, H. B. Koctsauk, 5. 10. Mopryn

AHHoTanus. Pemenne 3a1a4 aHainu3a U CUHTE3a 3aMKHYTHIX IH(QPOBBIX CHCTEM CTaOMIM3AaLUU MOIABMXKHBIX 00b-
€KTOB CBSA3aHO CO 3HAUYUTEIbHBIMU TPYAHOCTSAMH, OOYCIIOBICHHBIMU TE€M, YTO BO3MYLICHHOE [BIXKCHHUE HEIPEPBIBHON Yac-
TH 3aMKHYTOH CHCTEMBbI ONHCBIBACTCS CUCTEMON OOBIKHOBEHHBIX NH(D(epeHIHanbHbIX ypaBHEHUH, a (YHKIIMOHUPOBAHUE
JUCKPETHOM 4acTH — alrOpUTMAaMU B KOHEUHBIX PA3HOCTSAX M PAa3HOCTHBIMM ypaBHEHHsMH. IlonmydeHue xapakrepucTHye-
CKOI'0 YpaBHEHHUS 3aMKHYTOI AMCKPETHOH CHCTEMBbI IIyTeM z-IIpeo0pa3oBaHus peueTdaToil GyHKIMU, KOTOpas COOTBETCT-
BYeT NEePeX0JHOH (yHKINU HENPEPHIBHOM YacTU CHUCTEMBI, JUIS CIIOXKHBIX 00BEKTOB, ONUCHIBAEMBIX UM depeHnanbHbIMU
YPaBHEHUSMH BBICOKOIO MOPAJKA, YACTO HE NPEJCTaBIsAeTCd BO3MOXKHBIM. OJHUM M3 BO3MOXHBIX MyTeH peIleHHs Mpo-
6JieMbl SBIIAETCS Iepexo] 0T MaTeMaTHYECKOH MOJEIN KOHTHHYaIbHO-AMCKPETHONW 3aMKHYTONH CHCTEMBbI CTAaOMIM3aLNK K
NpUOIKEHHONW MaTeMaTH4eCKOlH MOJISNIN JUCKPETHOH 3aMKHYTOM CHCTEMBI C HCIONIb30BaHHEM OECKOHEUHBIX MaTPUYHBIX
PANOB, COAEPKAIUX COOCTBEHHYIO MATPUIy M MAaTpPHIy YIPaBJICHHUs HENPEPBIBHONW YaCTH CHUCTEMBI, a TAaKXKe IEpHOJ
KBAHTOBaHUsI JUCKPETHOH YacTy. IIpy 3TOM TOYHOCTH 3a/1a4 aHAJIU3a M CUHTE3a 3aMKHYTOH CUCTEMBbI CTa0MIN3allMH OIIpe-
JIeNIAeTCA KOJTMYECTBOM YYUTHIBAEMBIX YJICHOB MAaTPUYHBIX psgoB. Ha mpumepe 3amkHyTO# 1udpoBoii cucremsl cradbuiu-
3allU¥ KOCMHYECKOH CTYNEHH TBEPAOTOIUIMBHON PAKEThI-HOCUTEIISA, OCYILECTBIIAIONIEH HoNeT B 0e3BO3yIIHOM IPOCTPaH-
CTBE C BKJIIOYEHHBIM MaplIeBbIM [JBHUIraTelIeM, PellIeHa 3ajaua NOCTPOCHUs 00acTel yCTOHUMBOCTH 3aMKHYTOH LU poBoii
cUcTeMbl CTaOMIN3alMU B INIOCKOCTH BaphUPYEMBbIX ITapaMeTpoB LU(POBOro cTabMIN3aTOpa U IPOBEACH CPABHUTEIBHBIN
aHalU3 3TUX o0JacTel U pPa3IMYHOM YHCJIE YUYUTHIBAEMBIX WICHOB MaTPUYHBIX PAJOB U Pa3IMYHBIX 3HAUCHUAX NEpHOIA
KBAaHTOBaHUs HU(POBOro crabuiInzaropa.

KioueBbie ¢10Ba: KOHTUHYAIBHO-IUCKPETHAs CHCTEMAa CTaOMITH3aLHH; IH(POBOH CTaOMIN3aTOp; 00NACTh YCTOHYH-
BOCTH 3aMKHYTOH JIUCKPETHOH CHCTEMBI; IEPHOJ KBAaHTOBAHUS CTAOMIIH3aTOPA.
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