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MODELING NONLINEAR ELEMENTS OF CRITICAL COMPUTER NETWORK

Abstract. The subject of research discussed in the paper is indicators of a critical network performance. The research
target is a model of nonlinear elements of a critical network. The research objective is creation of a model for nonlinear
elements of computer network (CN) telecommunications facilities of a critical system providing the desired parameters of
QoS. The paper fulfills the following tasks: analysis of the main factors causing impaired service quality in CN; creation of
a model for a small nonlinearity impact on forming free oscillations by generating a relevant motion equation; analysis of
oscillator free motion presented in the form of the Duffing equation; working out a general integral of the Duffing equation
as applied to a stiff system. The research methods used are: the foundations of the theory of computer systems and
networks and the nonlinear differential equations theory. The results obtained are as follows: the main factors presumably
causing impaired network services of forensic systems are analyzed; it was found that one of the main causes is the
telecommunications component of CN, which possesses a number of critical parameters, including lack of stability and
robustness of data signal frequency; numerical simulation of the findings was performed. Conclusions: a formula was
devised to define the relationship between the free oscillation frequency and the oscillation system energy with reference to
nonlinearity which takes into account the parameters of the oscillation system initial state at startup; nonlinearity of the
oscillation system of a self-oscillator has a significant impact on accuracy and stability of its output oscillation frequencies;
it was determined that for equivalent nonlinearity parameter values k>0.] there is a considerable mismatch between the
reference signal and the actual signal transmitted in the network, which can cause a large deterioration of QoS; further
research should be aimed at development of hardware-software tools making it possible to reduce the impact of small
nonlinearities of telecommunications equipment elements of critical networks on quality of performance.

Keywords: critical networks; nonlinearity of oscillation system; equivalent nonlinearity parameter; telecommunications

component of computer network; signal frequency stability and robustness.

Introduction

Computer systems and computer networks (CN) in
the modern world are becoming crucial for the
performance of management and decision-making
systems in various spheres of human life. To a large
extent, this also applies to critical systems for which there
are stricter requirements for quality, reliability, integrity
and rate of data transmission. These systems include a
forensic system titled “Automated system for the
accumulation of empirical data on the practice of
computer-technical expert examinations” that was
developed by the specialists from Department of
Computer Engineering, Telecommunications, Video- and
Audio-recording Research of Hon. Prof. M.S. Bokarius
Kharkiv Research Institute of Forensic Examinations [1].

Review of literature. A significant number of
works have been devoted to the problem of providing
the required parameters of service quality (QoS) [2-19].
They identified the main factors causing a decrease in
the quality of service in CN. The factors can be divided
into several groups:

— factors determined by CN
architecture;

— factors determined by the strategy of control
and redistribution of the CN computational power;

— factors determined by properties
parameters of telecommunications facilities of CN.

Each of these factors has been explored in
numerous research works, but the present paper focuses
on the last-named factor. The properties of
telecommunications facilities play an important role in
ensuring compliance between the required QoS
indicators and those actually realized in modern
computer systems. One of the main parameters affecting

structure and

and

the quality of service is the stability and robustness of
the frequency of a signal over which data is transmitted.
In [1, 21], methods and techniques for improvement of
the accuracy of carrier frequency measurement in
computer networks, reducing the jitter effect and
increasing synchronization in communication channels,
are analyzed. However, the studies were conducted
without taking into account the nonlinear properties of
either the signal source or the propagation medium. In
reality, everything is much more complicated, because
there is a need to consider the small nonlinearity of the
elements of telecommunications facilities of CN.

The paper objective is creation of a model for
nonlinear elements of computer network (CN)
telecommunications facilities of a critical system
providing the desired parameters of QoS. To solve this
problem, a number of specific problems are to be solved:

1. To create a model of small nonlinearity impact
on the formation of free oscillations by composing an
appropriate motion equation

2. To analyze the free oscillator motion having the
form of the Duffing equation

3. Construct a general integral of the Duffing
equation as applied to a stiff system

Basic relationships and formulations

1. To solve the outlined problem, let us evaluate the
impact of small nonlinearity on the process of forming free
oscillations of a resonant oscillation system of an
individual quartz generator. The free motion equation for a
conservative nonlinear oscillator has the form:

z+ fx)=0, )]

where f(x) is the restoring force in dimensionless
form.
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The cross travel of the bar supporting a weightless
flexible coating is described using the function:

f)=x+x>, A>0. )

Free oscillations in a non-damped electric circuit
of nonlinear capacitance are described (4.2) using
magnetic ferrielectric. Parameter A is called K-rating
factor. Equation (1) with the restoring force (2), where
A>0 or A<0, is commonly referred to as the Duffing
equation. In case of a simple pendulum making planar
motion, function f(x) equals:

. 20X
f(x) =sin(x) =x G +120 3)

A mass oscillating in a direction orthogonal to the
direction of the stretched spring axis gives the restoring
force of the following form:

f(x)zx(l+[3—[3/\/l+x2), B>0. (4)

In (2) and (4), the restoring force corresponds to a
stiff (hard) system; while in (3) — to a non-stiff system.

2. Consider the free motion of an oscillator in the
form of the Duffing equation:

$+x+x =0. 5)
Equation (5) permits reduction of order. Suppose:
x=v,v=v(x),
then 5é=\>=ﬂ~ﬁ=1/ﬂ.
dx dt dx

Consequently, equation (5) becomes:

(6)

v i =0, (7)
dx

Separating the variables, we get:
vdv + (x+2x° )dx =0,
By integrating the last equation, we find:
V24 1(x)=Cy, Cp=Const, (8)
where 71(x) is potential energy,
(x)=x2/2+2x* /4. )

Constant Cj is derived from the initial conditions:

v(x ) =vy, x(0) = xg. (10)
The value of Cy equals:
Co =4 [2+ I(xy). (11)
We deduce v from equation (8):
v(x ) =+J2Co — (xg). (12)

In the plane (x,v), the phase trajectory consists of
two branches. Let us consider the case of A=0. The
phase trajectory of a linear oscillator is a circle.

Let us assume that A > 0 (a stiff system).

Constant Cy > 0 for any values of v, x, in the
initial conditions (10). The graphic plotting shows that
the phase trajectory is closed i.e. solution (5) satisfies
the initial conditions (8) and is periodic. Constant Cj is

determined by expression: Cy = Vv (0)/ 2, where v(0) is
the value of velocity corresponding to the value of x=0.

From (11) it is seen that (for the same values of vy,
Xp) an increment of the nonlinearity parameter A leads to
an increase in velocity v(0). The point of intersection of
the phase trajectory and the x axis is found from
equation /1(+x))=C,, where

x1=2\/C0/(1+\/1+4XC), lim x, =xp.  (13)
A—0

The limit values of x; correspond to a very stiff
nonlinear system. In a very stiff nonlinear system (x, =
const), there is a phase trajectory stretching along the v-
axis. The condition x,# 0 is essential. Consider the case
of 1 < 0 (non-stiff system). Constant C,, given by
formula (11), has two upper maximums, corresponding
to values of x; ==*x,, where x, equals:

Xy = —60/7\4, A <O. (14)
The value of the maximum Cy(x,) is equal to:
max Co(xg) =vg /2-1/(4%), %>0. (1)

Potential energy 71(x), according to (4.9), has two
upper maximums corresponding to values of xy ==*x,,
where x, is found from (14)

max 71(x) = —1/(41) =1/(4]A))=C" > 0. (16)

As can be seen from (15) and (16), there are values

of Cy which satisfy inequality C, > C". Let us define
more precisely the range of initial values vy, x, which
meet the indicated inequality. We will fix the values of

xp and define the range of values vg as an inequality:
v > (V[ +[2]x3 ) /2=3 (17)

In (17) inequality Cy > C" is satisfied.

Theorem. When meeting the initial conditions,
satisfying inequality (18), the motion, described by the
Cauchy problem for the Duffing equation which
corresponds to a non-stiff system, is unlimited.

Proof. Consider the right side of (12). It is
determined for any x and is an increasing function for
x — * o . The theorem is proved.

We will specify the description of the trajectory in
the phase plane for satisfied (18). Let us denote the right
side of the inequality (18).

vlz(xo,k) > (|k|x61 —2x§ +1/|k|)/2 .
It is not hard to prove that
v (xg,4) >0, x5 #1/A],

VE(Ex,0) >0, x, = JI/A].

Hence, phase trajectories, satisfying inequality
(17), do not cross axis X. Consider the phase trajectories
of a non-stiff system, which cross X-axis. Let constant

(18)

C, satisfy inequality Cy < C". As aresult we get:
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VO < V] (xo,k),

where vlz (xg,A) is determined in (18).

Therefore, we have an inequality that is opposite to
the inequality in (17). The initial conditions in (10) are
set at any arbitrary time, thus it is more convenient to
set the conditions at the time of crossing the phase
trajectory of X-axis.

v(xp) =0, x(0) = x (19)
We apply (19) to (12), taking into account Cy < C:
Co=11x). /2| [4<1/(4]p]).

that is v (xp,1)>0.
From this we derive two initial conditions:

v(xg) =0, x(0)=xo 0 <|xg <1/ ]
V() =0, x(0)=xo  |xo|>1/{f]2] 21)

When the initial conditions (20) are met, the
motion is periodic, and phase trajectories are closed
lines which surround the origin of coordinates. When
the initial conditions (21) are met, the solution of the
Duffing equation is unbounded. We will consider the
trajectories of periodic motion in more detail. According

to (20), we set
|x0|>1/\/m, 0<e<l.

From (20) and (11), we find Cy. From (12) we
define /v(x). As a result, we have a phase trajectory
formula:

)| = (s/M)- (1-5/2) -2+ x* ) 2. o

|x|£|x0|, O<e<l.

(20)

(22)

We will use (23) to calculate the ratio
[v(0)/xo| =1-¢/2, 0<e<l.

It follows from (24) that the phase trajectories of
the periodic motion of a non-stiff system are stretched
along the X-axis. Therein lies the qualitative difference
between the phase trajectories of periodic motions of
non-stiff and stiff nonlinear systems. Formulas (23)
allow estimating velocity at any point of the phase
trajectory explicitly under a certain initial deviation of
the system, described in (20) and (22). The equation of
phase trajectory (12) in implicit form is written as
F(x,v)=0, where F equals:

(24)

Fx,v) =12 =20, +x2> + 0 2.
The special points have coordinates (0,0), (—x?, 0),
(x*, 0), where x5 =+/—1/A . The slope of the tangent line

k=9, is found from the equation 4+ 2Bk + Ck? = 0,
where 4, B, C are values of derivatives

d’F d*F 4d°F

dxr dxdv’ g2

at points. Let us find the derivative of order two:

d’F
0lx2

A quadratic discriminant with respect to K has the
form:

d*F

=2+ 6kx2,
dxdv

0,

BZ—AC=—2(2+6M2)<O.

Therefore, the special points are such that they
have no tangent. These points are called isolated. In the
small neighborhood of isolated points, the restoring
force displays different behavior. We will analyze the
restoring force by power series summation. Keeping the
first term of the power series, we deduce:

0,0, f(x)=x; (=x%,0), f(x)~=2(x+x,);

(x%,0), f(x)~-2(x-xy).

It is seen from the formula that in point (0,0) the
restoring force is directed towards equilibrium. In the
rest of the points, the restoring force turns into the
repulsive one.

3. Let us create a complete integral of the Duffing
equation as applied to a stiff system:

F+x+ix> =0, A>0 (25)
Solution (25) is found in the form of an elliptic cosine
x=acn(u,k), u =ot, (26)

where @, o, k are unknown invariables.
We will use the known ratios from the theory of
elliptic functions

(cnu)' = —snudu; (snu)' = snu - dnu,

27
(dnu)' = —k?snu -cnu. @7
Let us find the derivatives of (26)
X =—acsnudu; X = (cnu- dnu —kzsnzucnu) X
(28)

><(—acs2 ) = —xo’ (dnzu —kzsnzu).

(28) is transformed, using other ratios from the
theory of elliptic functions:

2 2
:1— .
snu cn“u; (29)
dn*u =1-k*sn*u=1-k? + cn’u.
We get
i=-xc° [(1 - k2)+ k2en*u—k? (1 —cnzy)} =
= xo? [(1—k2)+x2 -2k2/a2},
thatis  ¥+o° (l—kz)x+(2k262/a2)~x3. (30)
From (26) and (30), two equations are derived
o2 (1—k2)=1, 2k%6% /a2 = . 31)

Equation (31) includes three unknowns; therefore
we will consider the initial conditions:

x(0)=xy, #(0)=0. (32)

Satisfy the initial conditions, taking into account
that cn(0, k) =1, sn(0, k)=0. We find that a = x, i.e. it
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equals the shift at the initial instant. By condition A> 0;
that is why in (31) the values of k satisfy inequality

0<k<1/y2. (33)

Consequently, we have a complete integral of the
Duffing equation (a stiff system) in the form:

X = Xxqpcn (ct,k), (34)
2
where o= ;, A= L (335)
(1—2k2) @ (1—2k2)
The values of k& (equivalent parameter of

nonlinearity) in (33) correspond to the interval of
nonlinearity parameter 4, ranging from zero to infinity.

Research results

Fig. 1 presents the calculated data for the impact of
nonlinearity of network equipment elements on the
stability of the frequency of information transmission in
the network. This graph demonstrates to what extent the
stability of master generator signal varies as the
parameter k changes.
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Fig. 1. Dependence of the signal variation coordinate
on the equivalent parameter of nonlinearity &

For better illustration, Fig. 2-4 present the
differences between the propagating signal and the
standard harmonic signal for different ranges of the
equivalent parameter of nonlinearity. Fig. 2-4 are
presented in such a way that they cover the entire range
of variation of the equivalent parameter of nonlinearity 4.
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Fig. 2. The difference between the propagating signal
and the standard harmonic signal for 0<k<0.2
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Fig. 3. The difference between the propagating signal
and the standard harmonic signal for 0.2<k<(0.4

Fig. 4. The difference between the propagating signal
and the standard harmonic signal for 0.4<k<0.7

For small values of parameter £ within the range
0<k<0.01 (Fig.2), oscillations of the system are
harmonic or very close to them. The stability of

oscillation frequency is S0~2-10"%w. However, for
the value k=0.25, the frequency stability deteriorates

considerably to dw~5 10%w. Such frequency
fluctuations are large enough to impair the quality of CN
functioning. Yet, with further increase in the value of
parameter k, considerable mismatch of harmonic process
is observed. Thus, as a result of numerical simulation of
an oscillation process in the data transmission channels of
CN, it has been established that even a slight nonlinearity
can lead to significant changes in the frequency of a
signal transmitted in the network, which in turn causes a
severe loss of information or longer time required for a
reliable transmission.

Conclusions

The paper conducts analysis of the main factors
which can be regarded as the cause of the degrading
quality of service of computer forensic networks. It has
been established that one of the main causes is the
telecommunications component of CN, which has a
number of critical parameters, including lack of stability
and robustness of data transmission signal frequency.

The paper studies the impact of small nonlinearity
of telecommunications equipment elements (generators,
multiplexing units and transmission medium) on the
functioning of the relevant datalinks.
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According to the results of the study, the following
conclusions can be made:

1. A formula for a relationship between free
oscillations frequency and oscillation system energy
with regard to nonlinearity is developed, which makes it
possible to take into account the parameters of the initial
conditions of an oscillation system at start.

2. The nonlinearity of the oscillatory system of a
self-excited generator impacts considerably the accuracy
and stability of its output oscillations frequency.

3. As aresult of numerical simulation, it has been
established that for small values of parameter £ within
the range 0<k<0.0Isystem oscillations (Fig.2) are
harmonic or nearly harmonic. Oscillations frequency

stability oo ~ 2-10%®. But when reaching the value

of k=0.25, frequency stability deteriorates considerably

to 80~ 5-10"%w. Such frequency fluctuations are large
enough to impair the quality of CN functioning. Yet,
with further increase in the value of parameter k,
considerable mismatch of harmonic process is observed.

4. It has been established that even a slight
nonlinearity is able to cause significant changes in
transmitted signal frequency, which in turn leads to
substantial losses of information or increase in time
required for a reliable transmission.

Further research should be directed towards the
development of software and hardware tools that allow
reducing the impact of small nonlinearities of
telecommunications equipment elements of critical
computer networks on their performance.
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MopemoBaHHs HeJNiHII{HUAX eJIeMEHTIB KOMI'IOTEPHOI MepesKi KPUHTHYHOIO 3aCTOCYBaHHA
M. O. MoxaeB

Anotanis. Ilpeaverom K0CTiZKEHHS B CTATTi € OKA3HUKH AKOCTI (DYHKIIOHYBaHHS KOMIT'FOTEPHOI MEPEKi KPUTHUHOT'O
3acrocyBaHHs. OO'€KT IIOCHIDKEHb - MOJENb HEINIHIMHUX €JIEMEHTIB KOMITIOTEPHOI Mepexi KPUTHYHOro 3acrocyBaHHs. Mera
poGoTH - CTBOpEHHS MOAEINI HeNiHIHHUX €IeMEeHTIB TelleKOMyHiKaliiHoro obmagHanHs komm'torepHoi mepexi (KC) cucremu
KPUTHYHOI'O 3aCTOCYBaHHs UL 3a0e3nedyeHHs HeoOXigHux mapamerpiB QoS. V crarri BUpILIYIOTBCS Taki 3aBJaHHS: aHAII3
OCHOBHUX (DaKTOpiB, I1I0 BUKIMKAIOTh 3HIKEHHs KocTi oOcimyroByBanHs B KC; crBopeHHS Mozieli BIUIMBY MajIoi HeJIiHIHHOCTI Ha
(bopMyBaHHS BiJIbHUX KOJIMBaHb, 33 JIONIOMOIOI0 CKJIaJIaHHS BIJIIOBIJHOTO PIBHSAHHS PYXY; aHaJl3 BUIBHOTO PyXy OCLHIISITOPA, IO
Mmae BunA piBHAHHA [roddinra; noOynosa 3zarampHOro iHrerpana piBHAHHA Jlropdinra B pasi KOPCTKOI CHCTEMH.
BuxopucToByroThCS Taki METOAM JOCIIJDKEHHS: OCHOBH TEOpii KOMITFOTEPHHX CHCTEM 1 MEpeX Ta OCHOBH TeOpil HeNliHIMHMX
mudepeHianbHuX piBHAHb. OTpUMaHi HACTYIIHI pe3yJbTaTH: IPOBEACHO aHali3 OCHOBHUX (AaKTOpiB, fKi MOXHA BBAXaTH
MPUYMHOKO 3HWKEHHS SKOCTI OOCIyroBYBAaHHS KOMITFOTEPHHX MEPEX CHUCTEMH CYIOBOi €KCIEPTH3M; BU3HAYEHO, IO OIHIEI0 3
OCHOBHUX IIPHYUH € TeleKoMyHikaliiiHa ciianoBa KC, sxa Mae psii KpUTMYHMX IapaMeTpiB, B TOMY YHCII 1 HeJOCTaTHs
cTalLIbHICT 1 CTIMKICTh YacTOTH CHUrHATy Inepenaui iHpopmarii; NpoBeIeHO YHCEeIbHE MOJIETIOBAaHHS OTPHMMAHUX DPE3y/IbTaTiB.
BucnoBku: Orpumana (opMmyna 3aJIeXHOCTI YaCTOTU BUIBHMX KOJIMBaHb BiJi €HEprii KOJMBAIBHOI CHCTEMH 3 YpaxyBaHHSAM
HENIHIIHOCTI, fKa J03BOJISE BpaxyBaTH IapaMEeTPH BHUXIJHOTO CTaHYy KOJIMBAIBHOI CHCTEMM HpH 1 3aIlycKy; HeNiHiHHICTH
KOJIMBaJIbHI CHCTEMHU aBTOT€HEpaTopa iCTOTHO BIUIMBAE HA TOYHICTDH 1 CTAOUIBHICTD YacTOT HOro BUXIIHHX KONMBaHb; BU3HAUCHO,
IO [PY 3HAYEHHSX EKBIBAICHTHOro Napamerpa HeniHiiHOCTI k> 0,1 BinOyBaeThCsl iCTOTHE HEY3TOJDKEHICTh MiXK €TaJlOHHHM i
pealbHUM CHTHAJIOM, SIKI IePEeNaroThCs B MEpexi, 10 MOXE IPUBECTH [0 3HAYHOTO 3HIKCHHS IOKa3HHKIB QoS, mojaibii
JIOCTIJDKEHHST HEOoOXiHO HalpaBUTH Ha PO3POOKY IPOrpaMHO-arapaTHUX 3acoliB, IIO JIO3BOJISIOTH 3HU3HTH BIUIMB MAaJMX
HENiHIIIHOCTE! eNIeMEeHTIB TeIeKOMYHIKalliHHOro 00JaJHaHHA KOMITTOTEPHHX MEpeX KPUTHYHOrO 3aCTOCYBAaHHS Ha MOKA3HUKH
SKOCTI (yHKILIOHYBAaHHSL.

Kaw4yoBi caoBa: KOMI'IOTEpHI Mepeki KpUTHYHOTO 3aCTOCYBAHHS; HENIHIHHICTh KOJIHMBAIbHI CHCTEMH; €KBIBAJICHTHUN
napaMeTp HeJliHIHOCTI; TeleKOMYHiKalliiiHa CKJ1a[JoBa KOMITIOTEPHOI MEPEsKi; CTaOUIbHICTD 1 CTIMKICTh YaCTOTH CHIHAINY.

MoneupoBaHue HeJIMHEHBIX 3J1eMEHTOB KOMIIBIOTEPHOM CeTH KPUTHYECKOI0 NIPMMEH eHUsl
M. A. MoxaeB

AnHoTtanus. IIpexmMeToM Hcc/ieq0BaHUsI B CTaThe SBIISIOTCS [TOKAa3aTeNIN KayecTBa ()yHKIMOHUPOBAHHS KOMITBIOTEPHON
CETU KPUTHYECKOro NpuMeHeHNs . O0beKT HccIeA0BaHNil — MOJIE/b HEJIMHEIHBIX 2JIEMEHTOB KOMITBIOTEPHON CETU KPUTHYECKOTO
npuMenenus. Lleas paGorsl — co3jaHMe MOJIENM HENMHEHHBIX OJIEMEHTOB TEJIEKOMMYHHKAIHOHHOTO 00OpYIOBaHHUS
xomnbtorepHOit cetn (KC) cucreMpl KpHTHYECKOrO INpHMEHEeHUs it obecniedeHns: TpeOyembix mapamerpoB QoS. B crarbe
PEIIAOTCs CIISYIONIME 3aJa4M: aHAIN3 OCHOBHBIX (DaKTOPOB, BBI3BIBAIOIIMX CHIDKEHHE KadecTBa oOcmyxuBaHus B KC; co3nanue
MOJIJY BIUSIHUS MaJIOH HeJIMHEeIHOCTH Ha ()OpMHPOBaHHE CBOOOIHBIX KOJIEOaHHH, IOCPEICTBOM COCTABIICHUS! COOTBETCTBYIOILETO
YpaBHEHUS IBVKEHHS; aHaJIM3 CBOOOIHOrO JABIKEHUS OCHWILIATOPA, MMeIoIero By ypaBHeHus Jroddunra; mocrpoenne obero
uHTerpana ypasHeHus [lrod¢uHra B ciydae >KECTKOH cHCTEMBL. VICIIONB3YIOTCS CIEYIOLIME METOMbI MCCICJOBAaHMUS: OCHOBBI
TEOPUH KOMITBIOTEPHBIX CHCTEM U CEeTel M OCHOBBI TEOPHHU HEJMHEWHBIX I epeHaIbHbIX ypaBHeHuit. [loaydens! aienyronme
Pe3yAbTaThl: IPOBEJECH aHAIN3 OCHOBHBIX (DAKTOPOB, KOTOpbIE MOXKHO CUMTAaTh NPUYMHOHN CHIDKEHHE KadecTBa OOCIY)KHBAaHHUS
KOMIBIOTEPHBIX CETeH CUCTEMBI CyHeOHOH OKCHePTH3bl; ONpesiesieHO, 4YTO ONHOW M3 OCHOBHBIX IIPUYMH  SIBJISETCS
TeJIEKOMMYHUKalMoHHast cocTapistomias KC, koropas uMeeT psii KpUTHYECKMX IIapaMeTpoB, B TOM YHCJIE HENOCTATOYHAs
CTaOWIIBHOCTh M YCTOMYMBOCTH YacCTOTBHI CHI'HAJIA Iiepelauydl MHPOPMAIHH; [IPOBEIEHO YHCIEHHOE MOJEIMPOBAHUE IMOYUSHHBIX
pe3ynbraroB. BeiBoasl: Tlomydena gopmyna 3aBUCUMOCTH 4acTOThI CBOOOHBIX KOJI€0aHUIT OT 3HEPruM KoeOaTenbHON CHCTEMBI C
Y4ETOM HEIMHEHHOCTH, KOTOpasi MO3BOJISAET y4eCTh NapaMeTpbl UCXOAHOIO COCTOSHUS KOJIEOATeIbHOW CHCTEMBI IPH €€ 3aIlycKe;
HEJIMHEHHOCTb KOJIEOaTeNIbHOM CHCTEMbI aBTOM€HEpaTopa CYIECTBEHHBIM 00pa30M BIMSAET Ha TOUYHOCTb U CTAOMIIBHOCTB YacTOT €ro
BBIXOJJHBIX KOJNICOAHMH; OIpesieseH0, YTO IpH 3HAYCHHUSX OSKBHBAJICHTHOTO Iapamerpa HeiuHeiHocTH k>(0,] NpoHCXOomuT
CYIIECTBEHHOE PACCOIIACOBAHME MEXKIy ATAIOHHBIM M PEaIbHbIM CUIHAJIOM, KOTOpBIE NEPEAAOTCS B CETH, YTO MOXKET IPUBECTU K
3HAYNUTENFHOMY CHIDKEHUIO MoKazareneit QoS, naybHeHIe ncciueoBaHus He00X0MMO HATIPaBUTh Ha pa3paboTKy IMPOrpaMMHO-
alnapaTHeIX CPEACTB, IIO3BOJLIOIIMX CHHU3UTH BJIMSHUE MAaJblX HEJIMHEHHOCTEH JJIEMEHTOB TEJIEKOMMYHHMKAIIMOHHOIO
000py/IOBaHHMS KOMITBIOTEPHBIX CETeH KPUTHIECKOro IPUMEHEHHS Ha ITOKa3aTeNIN KadyecTBa (hYHKIIOHUPOBAHHSL

KamoueBble cjoBa: KOMIIBIOTEPHBIC CETH KPUTHUICCKOI'O INPUMCHCHUS] HEJMHEMHOCTh KOjie0aTeIbHOM CUCTCMBI;
SKBUBAJICHTHBIN napameTp HeJ'lHHeﬁHOCTH; TCJICKOMMYHUKAIIUOHHAsA COCTaBJIAIOIIASA KOMHL}OTepHOﬁ CCTH, CTaOMJILHOCTh H
yCTOﬁ‘-IHBOCTB HaCTOThI CUT'HaJ1a.
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