
Advanced Information Systems. 2020. Vol. 4, No. 3 ISSN 2522-9052

 124

UDC 004. 8 doi: 10.20998/2522-9052.2020.3.18

Mykhailo Mozhaiev1, Viacheslav Davydov2, Zhang Liqiang3

1 Prof. M.S. Bokarius Kharkiv Research Institute of Forensic Examinations, Kharkiv, Ukraine
2 National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
3 Neijiang Normal University, Neijiang, China

ANALYSIS AND COMPARATIVE RESEARCHES OF METHODS
FOR IMPROVING THE SOFTWARE

Abstract. The results analysis of main methods for identifying software vulnerabilities presents in the article. The results

of authors’ research, synthesizing and regulating knowledge about systems for detecting software vulnerabilities, are presented.
The software analysis methods used during certification tests are considered. It is shown that the methods and techniques existing
for software security analysis use do not ensure the result accuracy under fuzzy input data conditions. This drawback is
aggravated by strict requirements for the test scenarios implementation speed. This is largely due to the fact that experts, in order
to a decision make, have to conflicting information large amounts analyzed. Consequently, it is necessary to develop a system for
identifying vulnerabilities, the main task of which will be to the conflicting information amount minimize used by an expert
when making a decision. The most promising direction the existing identifying vulnerabilities systems efficiency increasing is
seen in reducing the burden on an expert by methods for identifying vulnerabilities and implementing a decision support system
improving. This will significantly reduce the time spent on a decision making on software security, and, as a result, will the
software security testing procedure accessible to a developer’s wide range make more.

Keywords : computer systems; Software; security risks; security threats.

The requirements and security risks analysis
of computer systems software

The modern information space is a complex,
heterogeneous structure that performs society various
functions and needs. At the same time, a significant part
of the automation and intellectualization functions is
assumed by computer systems (CS). Malicious impacts
on the CS during their operation are carried out with
purposes various malicious of security services violation
(deterioration). The tasks solution related to the
prevention of unauthorized influences on the CS and the
information that is processed and stored in them is
carried out as part of comprehensive programs to
improve security. At the same time, the safety CS
improving problem is high relevance.

A generalized CS security model can be
represented as Fig. 1, which is based on the following
objects: security improving methods and means –
security software increasing models, methods and
means; user’s interaction computerized system –
hardware and software, computing, information,
linguistic, communication and other resources for

interacting with users, as well as the users themselves;
software – is one of the most important and vulnerable
computer systems components; security increasing
mechanisms and means – information protecting
mechanisms and means; security threats – a potential
event, action, process or phenomenon that could
damage the user’s interaction computerized system;
security risks – the potential possibility exploiting
vulnerabilities CS of a specific threat to cause damage.

An existing computer systems integral component
is software. And, in many respects, the operation CS
quality depends on the operating software quality. As
noted in the explanations, one of the most vulnerable,
from the view of security point, components the CS is
software. Moreover, the task of increasing (ensuring)
software security the complexity is compounded by the
need to take into account security risk factors
throughout the entire software development life cycle.

An international standards number of analysis and
regulatory documents [10, 11, 12, 14] has shown a
significant increase in software quality requirements
recently. This only confirms the fact the expert
community increase attention to the software operation

issues and tasks. The conducted
studies allowed classifying
software requirements and
presenting them in the diagram
form Fig. 2. This scheme clearly
illustrates the fact that now, in
addition to the ensuring tasks
completeness and use ease,
accessibility, reliability and
other characteristics, the
requirements for software
security are becoming
increasingly important among
operators. As the developing and
operating secure software
importance evidence, we can

© Mozhaiev M., Davydov V., Liqiang Zhang, 2020

Security improving methods and means

CS software
vulnerabilities

The computer
systems hardware

component
vulnerabilities

Threats Computerized user
interaction systemAttacks

CS vulnerabilities

Risks

Fig. 1. Generalized computer system security model

ISSN 2522-9052 Сучасні інформаційні системи. 2020. Т. 4, № 3

 125

note the annual growth its vulnerabilities identified. So,
in Fig. 3, statistics are presented for only one software
type – Web applications with risk varying degrees
vulnerabilities, noted by IBM over the past two years.

Open sources information research [1, 8, 16] made
it possible to present the most common vulnerabilities
types. The software security threats classification is
presented in Fig. 4.

Fig. 2. Software requirements classification

Fig. 3. The Web applications percentage

with vulnerability varying degrees

The presented classification is based on an
international standards number of software development
issues fixing. At first, these are the standards: ISO
10007-2007 “Organization management. Guidelines for
configuration management”, ISO / IEC 12207-2010
“Information technology. System and software
engineering. Software life cycle processes”, German
Information Security Agency. IT Baseline Protection
Manual – Standard security safeguards (Guide to the
information technology basic protection level), GOST
58412-2019 “Secure software development”, etc.

As can be seen from the presented classification,
at present there is a wide information range security
threats during software development. In addition, in
recent years there has been a significant increase in the
cyberattacks intensity, and hence an even greater these

Advanced Information Systems. 2020. Vol. 4, No. 3 ISSN 2522-9052

 126

threats spectrum expansion. Such a variety very often
leads to ambiguity in assessing the software security
level among experts and those responsible for
information security issues. Taking into account an

increasing number of factors and threats leads to the
uncertainty factors introduction, complicating
decision-making processes and reducing the results
accuracy.

Fig. 4. The software security threats classification

Therefore, it becomes important to develop and

implement models and methods for improving software
security, taking into account uncertainties.

The software vulnerability detection
methods analysis

The literature [1, 3] comparative review showed
that software traditional methods analysis are somehow
connected with the defects absence proof. Moreover,
these methods can be divided into two main categories:
inspection-testing and logical-linguistic.

It is known from [1] that such a classification is
based on their focus on the action object. So inspection-
testing methods are aimed at fixing the software security
violation fact, and logical-linguistic methods are aimed
at the software under study identifying deviations from
indicators declared in the technical documentation.

Research has shown that there are currently many
different options for classifying methods for identifying
software vulnerabilities. At the same time, noting their
wide range and variety, one can also indicate their
action direction and identify target and auxiliary
methods.

Let us present the methods classification for
identifying software vulnerabilities in the form of Fig. 5.

As can be seen from this figure, most of the
methods can be synthesized according to the expert;
dynamic, static and combined analyzes principles. At
the same time, about 45% of the methods are targeted.
Let us present the comparative characteristics of the
proposed methods.

Since the greatest effect in the software security
testing process is provided by target methods, we will
focus on these methods, evaluate them and highlight their
use limitations. To highlight these methods quality

characteristics using, we use the CWE (Common
Weakness Enumeration) database developed and
recommended by MITRE (mitre.org) Corporation and the
US Department of Homeland Security (DHS) Cyber-
security and Infrastructure Security Agency (CISA) [6].

We will select the characteristics recommended by
MITRE from the specified base: the input / output user
data processing errors (CWE - 78, 79, 89, 119, 134, 189,
352, 434); security functions errors (CWE - 21, 200,
255, 264, 287, 310); synchronization errors (CWE -
162, 399, 829, 834); the use software interfaces errors
(CWE - 583, 684); environment errors (CWE - 16, 733);
the error handling disadvantages (CWE - 703);
encapsulation errors (CWE - 653); low code quality
(CWE - 477).

The targeted methods applicability pie diagrams
for identifying software vulnerabilities, as applied to the
most common security threats analysis, are shown in
Fig. 6.

The critical software vulnerabilities statistics
analysis, in accordance with MITRE 2019 CWE Top,
OWASP Top 10−2019, WASC (Web Application
Security Statistics Project), made it possible to present
the most dangerous software errors brief description
(vulnerabilities) in Table 1.

As can be seen from the diagrams Fig. 6, the listed
and researched targeted methods for identifying
vulnerabilities cover most of the error spectrum.
However, the problem of identifying the vulnerabilities
most, at this stage, using existing methods has not been
completely resolved. In addition, it should be borne in
mind that most, even targeted, methods for identifying
vulnerabilities do not fully solve the assigned tasks.
However, some of them are applicable for detecting a
limited errors number.

ISSN 2522-9052 Сучасні інформаційні системи. 2020. Т. 4, № 3

 127

Fig. 5. Methods сlassification identifying software vulnerabilities

Fig. 6. The targeted methods applicability pie charts for identifying software vulnerabilities

Consequently, experts (developers) need to take

into account the fact that it is advisable to use the entire
possible the proposed methods spectrum. It is only
necessary to determine the methodology for their most
effective use in the security testing process.

This hypothesis is confirmed by the availability
methods with a sufficiently high applicability degree.
For example, formal verification is applicable to
identify more than 70% of errors, and interprocedural
context-sensitive analysis covers about 40% of software
vulnerabilities.

It should be noted that very the three-dimensional
scale introduction for assessing the presented methods

applicability introduces a fuzziness element in the
decision-making process about possible software
vulnerability. This is especially true when different
methods of identifying vulnerabilities show opposite,
conflicting results. The advertised software errors
variety, their occurring at all software development
stages possibility, the ambiguity of understanding the
rules and specifications by software developers (for
example, CWE-684), as well as other factors, reduce the
error detection accuracy, introduce ambiguity in the
conditions for identifying software vulnerabilities,
complicate by experts the adoption process software
security solutions.

Advanced Information Systems. 2020. Vol. 4, No. 3 ISSN 2522-9052

 128

Table 1 – The most dangerous software errors (vulnerabilities) brief description

№ Index Characteristics description Software vulnerability brief description
1 CWE-119 Improper Restriction of

Operations within the Bounds of a
Memory Buffer

The software performs operations on a memory buffer, but it can read from
or write to a memory location that is outside of the intended boundary of the
buffer.

2 CWE-79 Improper Neutralization of Input
During Web Page Generation

The software does not neutralize or incorrectly neutralizes user-controllable
input before it is placed in output that is used as a web page that is served to
other users.

3 CWE-78 Improper Neutralization of Special
Elements used in an OS Command
('OS Command Injection')

The software constructs all or part of an OS command using externally-
influenced input from an upstream component, but it does not neutralize or
incorrectly neutralizes special elements that could modify the intended OS
command when it is sent to a downstream component.

4 CWE-200 Exposure of Sensitive Information
to an Unauthorized Actor

The product exposes sensitive information to an actor that is not explicitly
authorized to have access to that information.

5 CWE-162 Improper Neutralization of
Trailing Special Elements

The software receives input from an upstream component, but it does not
neutralize or incorrectly neutralizes trailing special elements that could be
interpreted in unexpected ways when they are sent to a downstream component.

6 CWE-684 Incorrect Provision of Specified
Functionality

The code does not function according to its published specifications,
potentially leading to incorrect usage.

7 CWE-733 Compiler Optimization Removal
or Modification of Security-
critical Code

The developer builds a security-critical protection mechanism into the
software, but the compiler optimizes the program such that the mechanism is
removed or modified.

8 CWE-703 Improper Check or Handling of
Exceptional Conditions

The software does not properly anticipate or handle exceptional conditions
that rarely occur during normal operation of the software.

9 CWE-653 Insufficient Compartmentalization The product does not sufficiently compartmentalize functionality or
processes that require different privilege levels, rights, or permissions.

10 CWE - 477 Use of Obsolete Function The code uses deprecated or obsolete functions, which suggests that the code
has not been actively reviewed or maintained.

There is a need to synthesize knowledge about

software vulnerabilities and develop appropriate models
and methods to support decision-making about software
security, taking into account a fuzzy input data factors.

The models and methods analysis
for software security decision support

The literature analysis [4, 5, 7] and research
conducted have shown the approaches, models, methods
and decision support systems (DSS) wide range.

Based on the generally accepted classification
systems, three main the decision making theory
approaches can be distinguished, divided according to
the conditions for making decisions:

- in certainty conditions taken;
- in risk conditions taken;
- in uncertainty conditions taken.
At the same time, the conducted research has

shown the alternatives priority to the DSS models and
methods occurring under a risk and uncertainty
conditions. It should be noted that most often, in
practice, in order to improve the DSS systems quality
and accuracy results, it becomes necessary to synthesize
knowledge in a risks and uncertainties reducing for
solving problems.

Research have shown that in the DSS systems
development, taking into account the reducing risks
tasks is reduced to minimizing the first and second kind
errors probability that arise when making decisions.

It is known from [4] that it is customary to refer
the first kind mistakes as a wrong solutions making in
the current conditions, to the second kind errors - not to
accept the right one. Quantitatively, these errors ratio
consequences are estimated by the risk formula:

 12 12 21 121 minR C P H C P H , (1)

where C12 – the expected "useful value" in the actions
taken result; P(H12) – the probability that the actions
strategy is chosen correctly and the event will be
completed with a positive result; C21 – losses arising as
a breakdown result or unreasonable decision to act;
P(H21) – the probability of wrong choice strategy,
leading to a negative result.

In the works [7, 13] the risk reduction approach
when testing the computer systems security was
considered. The ROC-analysis apparatus was taken as
the basis for solving the problem. Using the data and
research results, the authors carried out a comparative
analysis of the developed methods for identifying
anomalies and abuses of critical computer systems. The
hypothesis was confirmed that the methods for
identifying anomalies, which were based on the fuzzy
mathematics theory rules (fuzzy discriminant and
cluster analysis and a fuzzy expert system based on the
Bayesian classifier), satisfy the established quality
criteria. At the same time, the computer systems
software component architectures and semantics
development rapid pace requires an increase in the using
efficiency this well-known mathematical apparatus.

It should be noted that the certain methods
possibility risk reduction is determined by the fact that
their occurrence nature is in the same area in which the
information uncertainty arises. Risks are determined
both by making decisions based on incomplete initial
data and by the confrontational systems actions
algorithms ignorance. Accordingly, the risk reduction
calculation methods can be considered from a reducing
uncertainty methods set. The DSS systems synthesizing

ISSN 2522-9052 Сучасні інформаційні системи. 2020. Т. 4, № 3

 129

task in this situation is reduced to the specific methods
choice for reducing uncertainty, their combination or
integrated use. The reducing uncertainties methods
classification is shown in Fig. 7. As you can see from
the figure, the uncertainties reducing methods can be
conditionally divided into two large groups: based on

the starter data modifying methods and algorithmic. The
conducted research has shown that the initial data
modifying methods choice is implemented taking into
account the requirements for the data processing quality
(for example, taking into account the requirements for
the problem solving promptness).

Fig. 7. The reducing uncertainties methods classification

For example, multivariate planning methods are

very popular in the financial and economic sector. And
some works in this industry [5] emphasize their use
appropriateness in solving optimization problems of
allocating resources and forces. However, the
significant time spent on their implementation, as well
as the taking impossibility into account the possible
alternatives entire range, reduce their capabilities when
solving problems in increasing software security.
However, the significant time spent on their
implementation, as well as the taking impossibility into
account the possible alternatives entire range, reduce
their capabilities when solving problems in increasing
software security.

The uncertainty successive reduction methods
have a similar disadvantage, although such the methods
accuracy, as seen from the sources [18], is quite high.

The intellectual processing methods, despite their
diversity and positive reviews [15, 18], ultimately most
often come down to separate structural subtasks of the
overall task consistently reducing uncertainty. Based on
this, we can conclude about the relatively these methods
low efficiency.

At the same time, the fuzzy sets theory at this stage
has significant prospects for its development. So in the
works [4, 7] high obtaining accuracy and efficiency the
resulting data processed using the fuzzy sets theory the
methods is noted.

With an algorithmic approach to reducing
uncertainty, the methods choice is most often limited to
the decision theory functionality. Each of these methods
has a advantages and disadvantages set.

So in the works [9, 15], it is noted on the one hand
the solving multi-alternative problems possibility of the
game theory mathematical apparatus (namely, in this
problem formulation we most often encounter when

modeling the software security testing process), and on
the other hand, the uncertainty in the indicators and
optimization criteria. Also, high computational
complexity significantly limits the implementing
practical this modeling mechanism possibilities.

And, for example, in the works [2] devoted to the
expected utility theory, it is noted that this theory main
provisions application to reduce the uncertainty, the
source of which is the information asymmetry,
contributed to the agency relations normative theory
formation. But it is this, according to the authors that
often become a factor in reducing the resulting data
accuracy. A shift in the research vector only towards
empirical knowledge reduces other theoretical
approaches value, which ultimately leads to a decrease
in the modeling results quality.

Largely, the bounded rationality methods [4] have
similar disadvantages, which recommend minimizing
the expected result, based on the person’s (expert’s)
socio-psychological characteristics making the decision.

The literature review conducted [4, 15, 17] led to
the works conclusion about a large number devoted to
the mathematical programming methods. So, to the
mathematical programming problems solve, more than
two dozen mathematical methods are used: from the
simplest "northwest corner" to computationally complex
gradient methods for finding an extremum. Taking this
into account, the DSS systems efficiency improving
problem using this mathematical apparatus is not in the
new mathematical programming methods development,
but rather in the complexity of formalizing the solution
conditions and choosing methods for them that most
adequately describe the controlled system functioning.

Research have shown that the structural modeling
methodology, "classical" higher mathematics, the "soft"
computing’s theory for a classes of problems and

Advanced Information Systems. 2020. Vol. 4, No. 3 ISSN 2522-9052

 130

models wide range solving are described in sufficient
detail in the scientists works. So, for example, it is
described in the works devoted to the DSS systems
software creation [7, 8], the calculations general
mathematical methods development in the decision
support interests [4], and mathematical modeling
interests [17, 18]. Despite the rather long history and
these methods variety, their improvement and use will
allow one to fulfill a particular scientific tasks number
of increasing software security. So, for example,
structural modeling methods will allow formalizing the
DSS process, and the methods of the "soft" computing
theory and "classical" higher mathematics will the basis
of the developed method become for software security
increasing.

Thus, the forming alternatives problem in DSS
systems about software safety in a priori uncertainty
conditions and the resulting risks can be solved by
improving mathematical methods [7, 15, 17, 18].

Research problem statement

The research conducted on existing systems for
identifying software vulnerabilities have shown that
they have a disadvantages number associated with the
complexity of processing a input data large amount with
a high contradiction degree. In addition, the lack of
improved decision support mechanisms reduces the
expert group effectiveness. Confirming this hypothesis,
we present a generalized model for identifying
vulnerabilities in Fig. 8.

iV

Fig. 8. Generalized vulnerability identification model

As can be seen from the figure, the information

amount obtained during software testing V the
expert's decision-making process significantly
complicated makes, the time for implementing test
scenarios increases, and the software security
procedures effectiveness reduces. V is defined as the
software security tests results sum carried out by various
methods.

1

n
i

i
V V

 , (2)

where i – the method number; n – the test cases number.
The value iV depends on the source code volume

and software compilation results rV , the possible

vulnerabilities database volume sV , as well as the
algorithm that implements the check ,i i r sV F V V .

The time testt required to implement test scenarios
for analyzing software for vulnerabilities is determined
similarly to the value iV . The value testt depends on the
vulnerability detection system operating time свуt , as

well as the time эt required for an expert to make a
decision.

The time свуt is determined by the maximum time
values spent on searching for vulnerabilities, by each of
the methods implemented in the system for identifying
vulnerabilities.

Assuming that software security tests start running
at the same time безt , the total time to determine
software security is:

 1max , ,без r s n r s эt f V V f V V t . (3)

The values iV , based on the problem formulation,
should be free from uncertainty signs. However, the
resulting data that determine software security decisions
due to the data possible polarization may again become
fuzzy.

Proceeding from this, increasing the software
security testing procedures efficiency, as well as the
making decisions efficiency about security, lies in the
optimization problem plane solving of minimizing the
fuzzy sets fuzziness index.

The fuzzy sets fuzziness index, on the one hand,
directly depends on the fuzzy set power, that is, the
analyzed data volume V , and on the other hand, it

depends on the conflicting data set power (пр)V .
Accordingly, a particular optimization problem can be
transformed into the result:

(пр) minV , (4)

when limited допR R .
To reduce the importance there is proposed to

improve the method for identifying vulnerabilities in the
work, as well as DSS methods as the system integral
part for identifying vulnerabilities use. These methods
implementation will allow you to achieve the required
result by removing from V the data that do not affect
decision making, automate the data processing process
and focus on important information for decision
making. It is proposed to use these methods as the
vulnerability detection system modules components. In
this case, the generalized model for identifying
vulnerabilities is transformed into Fig. 9.

In the presented figure, it is not possible to display
the detecting software security promptness factors
account. However, the efficiency characteristic
significantly affects the software quality and its security.
For the optimization problem representation
completeness, we introduce the software safety
indicator, and denote it as the software secure factor

(ПО)
безK .

ISSN 2522-9052 Сучасні інформаційні системи. 2020. Т. 4, № 3

 131

V

Fig. 9. Improved generalized vulnerability
identification model

Based on this, we present the software security

increasing task in the mathematical expression form:

 (ПО) (пр)arg min /без допбезK t f V R R .

Thus, in order to a scientific problem solve and
this goal achieve, it is necessary to the following
research tasks solve:

– to conduct an existing methods analysis
comparative and research for identifying vulnerabilities
and making decisions on software compliance with
security requirements;

– to improve the model and method for identifying
software vulnerability;

– no develop a method for making a decision on
software security;

– to evaluate the developed methods effectiveness
and the research results obtained reliability;

– to develop practical recommendations for the
software security increasing developed methods using.

Conclusions
The results analysis of main methods for

identifying software vulnerabilities presents in the
article. The results of author’s research, synthesizing
and regulating knowledge about systems for detecting
software vulnerabilities, are presented. The software
analysis methods used during certification tests are
considered.

It is shown that the methods and techniques
existing for software security analysis use do not ensure
the result accuracy under fuzzy input data conditions.
This drawback is aggravated by strict requirements for
the test scenarios implementation speed. This is largely
due to the fact that experts, in order to make a decision,
have to large conflicting information amounts analyze.
Consequently, it is necessary to develop a system for
identifying vulnerabilities, the main task of which will
be to the conflicting information amount minimize used
by an expert when making a decision.

The most promising direction the existing
identifying vulnerabilities systems efficiency increasing
is seen in reducing the burden on an expert by methods
for identifying vulnerabilities and implementing a
decision support system improving. This will
significantly reduce the time spent on a decision making
on software security, and, as a result, will the software
security testing procedure accessible to a developer’s
wide range make more.

Also, the software security testing procedures
availability increasing have to the both developers and
information systems users interest increase to the
security problem, which, in turn, will give a new
impetus to the methods and systems for identifying
vulnerabilities development and verifying software
compliance with security requirements.

REFERENCES

1. Kazarin, O. V. (2003), Security of computer systems software, MGUL, Moscow, 212 p.
2. Podshivalov, G.K., Ternovskov, V.B., Demidov, L.N. and Tarasov B.A. (2016), “Economic security in the face of

uncertainty”, Economics: yesterday, today, tomorrow, No. 2, pp. 242-257.
3. Savin, R. (2007), Testing Dot Com or A Manual on Bug Abuse in Internet Startups, Delo, Moscow, 312 p.
4. Tikhanychev, O. V. (2018), Theory and practice of decision support automation, Editus, Moscow, 76 p.
5. Yuzvovich, L.I. and Yudina, E.A. (2014), “An integrated approach to the study of the essence, principles and methods of

financial planning at enterprises in the economic system”, Fundamental research, No. 9, pp. 1596-1601.
6. (2020), CWE List Version 4.1, available at: https://cwe.mitre.org/data/.
7. Gavrylenko, S., Chelak, V., Hornostal, O. and Vassilev, V. (2020), “Development of a method for identifying the state of a

computer system using fuzzy cluster analysis”, Advanced Information Systems, Vol. 4, No. 2, pp. 8-11, DOI:
https://doi.org/10.20998/2522-9052.2020.2.02.

8. Imtiaz, N., Murphy, B. and Williams L. (2019), “How Do Developers Act on Static Analysis Alerts? An Empirical Study of
Coverity Usage”, 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE), Berlin, Germany,
pp. 323-333, DOI: https://doi.org/10.1109/ISSRE.2019.00040.

9. Ishizaka, Alessio and Philippe, Nemery (2013), Multi-criteria Decision Analysis: Methods and Software, SAP Labs – China,
Shanghai, PRC 2013, 310 p.

10. (2020), ISO/IEC 27034-1:2011 Information technology – Security techniques – Application security, available at:
https://www.iso.org/standard/44378.html.

11. (2020), ISO/IEC 15408-1:2009 Information technology — Security techniques — Evaluation criteria for IT security,
available at: https://www.iso.org/standard/50341.html.

12. (2020), New ISA/IEC 62443 standard specifies security capabilities for control system components, available at:
https://www.isa.org/intech/201810standards/.

13. O’Connell, and James, L.M. (2013), “SzalmaRoc-Estimator Software and Roc Analysis”, Proceedings the Human Factors
and Ergonomics Society Annual Meeting, Vol. 57 is. 1, pp. 1432-1434.

14. Sanjab, Anibal and Walid, Saad (2016), “On bounded rationality in cyber-physical systems security: Game-theoretic analysis
with application to smart grid protection”, Computer Science, Mathematics, 2016 Joint Workshop on Cyber-Physical Security
and Resilience in Smart Grids (CPSR-SG), Vienna, 2016, pp. 1-6, DOI: https://doi.org/10.1109/CPSRSG.2016.7684101.

Advanced Information Systems. 2020. Vol. 4, No. 3 ISSN 2522-9052

 132

15. (2020), OWASP Proactive Controls, available at: https://owasp.org/www-project-proactive-controls/.
16. Semenova, Z.V., Danilova, O.T. and Kovshar, I.R. (2019), “The analysis of security of a stack of technologies for

development of web-resources”, Dynamics of systems, mechanisms and machines, Vol. 7, No. 4, pp. 98-105.
17. Sinha, S.M. (2006), Mathematical Programming. Theory and Methods. Elsevier Science, 572 p.
18. Zhang, Yuchen and Liu, Jing (2019), “Optimal Decision-Making Approach for Cyber Security Defense Using Game Theory

and Intelligent Learning”, Security and Communication Networks Volume, Article ID 3038586, 16 p., DOI:
https://doi.org/10.1155/2019/3038586.

Надійшла (received) 25.06.2020
Прийнята до друку (accepted for publication) 02.09.2020

ВІДОМОСТІ ПРО АВТОРІВ / ABOUT THE AUTHORS

Можаєв Михайло Олександрович – кандидат технічних наук, завідувач сектором комп'ютерно-технічних,
телекомунікаційних досліджень та досліджень відео-, звукозапису Харківського науково-дослідного інституту
судових експертиз ім. засл. проф. М. С. Бокаріуса, Харків, Україна;
Mykhailo Mozhaiev – Candidate of Technical Sciences, Head of Department of Computer Engineering,
Telecommunications, Video- and Audio-recording Research, Hon. Prof. M.S. Bokarius Kharkiv Research Institute of
Forensic Examinations, Kharkiv, Ukraine;
e-mail: mikhail.mozhayev@hniise.gov.ua; ORCID ID: http://orcid.org/0000-0003-1566-9260.

Давидов Вячеслав Вадимович – кандидат технічних наук, доцент кафедри "Обчислювальна техніка та
програмування", Національний технічний університет "Харківський політехнічний інститут", Харків, Україна;
Viacheslav Davydov – Candidate of Technical Sciences, Associate Professor of Computer Engineering and Programming
Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;
e-mail: vyacheslav.v.davydov@gmail.com; ORCID ID: https://orcid.org/0000-0002-2976-8422.

Ліцзян Джан – викладач коледжу комп’ютерних наук, Типовий університет Нейцзяна, Нейцзян, Кітай;
Zhang Liqiang – teacher, College of Computer Science, Neijiang Normal University, Neijiang, China.
e-mail: zhangiq@njtc.edu.cn; ORCID ID: https://orcid.org/0000- 0003-1278-2209.

Аналіз та порівняльні дослідження методів підвищення рівня безпеки програмного забезпечення

М. О. Можаев, В. В. Давидов, Джан Ліцзян
Анотація . У статті представлені результати аналізу основних методів виявлення вразливостей програмного

забезпечення. Представлені результати досліджень ряду авторів, синтезуючих та регламентуючих знань про системи
виявлення вразливостей програмного забезпечення. Розглянуті методи аналізу програмного забезпечення, що
використовуються при проведенні сертифікаційних випробувань. Показано, що використання існуючих методів та методик
аналізу безпеки програмного забезпечення не забезпечує точність результатів на умовах нечисельних вхідних даних. Цей
недолік ускладнює жорсткі вимоги до оперативності реалізації тестових сценаріїв. Отже, необхідне розроблення системи
виявлення вразливих користувачів, основною задачею якої буде мінімізація кількості протирічної інформації, що
використовується експертом при прийнятті рішень. Найкраще перспективне створення підвищення ефективності існуючих
систем виявлення вразливостей полягає у зменшенні навантажень експертів за рахунок випробувань методів виявлення
вразливостей, що впроваджені до систем підтримки прийняття рішень. Це дозволить істотно знизити затримки часу при
прийнятті рішень щодо безпеки програмного забезпечення, а також, як наслідок, зробить процедуру тестування безпеки
програмного забезпечення більш доступною широкому колу розробників. Підвищення доступності процедур тестування
безпеки програмного забезпечення повинно підвищувати інтерес як розробників, так і користувачів інформаційних систем
до проблем безпеки, що, в свою чергу, дасть новий імпульс розвитку методів та систем виявлення вразливостей і перевірки
відповідності програмним вимогам безпеки.

Ключові слова: комп'ютерна система; програмне забезпечення; ризики безпеки; загрози безпеки.

Анализ и сравнительные исследования методов повышения безопасности программного обеспечения

М. А. Можаев, В. В. Давыдов, Джан Лицзян
Аннотация. В статье представлены результаты анализа основных методов выявления уязвимостей Software.

Приведены результаты исследований ряда авторов, синтезирующие и регламентирующие знания о системах выявления
уязвимостей Software. Рассмотрены методы анализа Software, используемые при проведении сертификационных
испытаний. Показано, что использование существующих методов и методик анализа безопасности Software не
обеспечивает точности результата в условиях нечетких входных данных. Этот недостаток усугубляется жесткими
требованиями к оперативности реализации тестовых сценариев. Следовательно, необходимо разработать систему
выявления уязвимостей, основной задачей которой будет минимизация количества противоречивой информации,
используемой экспертом при принятии решения. Наиболее перспективным направлением повышения эффективности
существующих систем выявления уязвимостей видится снижение нагрузки на эксперта за счет усовершенствования
методов выявления уязвимостей и внедрения системы поддержки принятия решения. Это позволит существенно снизить
затраты времени на принятие решения о безопасности Software, и, как следствие, сделает процедуру тестирования
безопасности Software более доступной широкому кругу разработчиков. Повышение доступности процедур
тестирования безопасности Software должно повысить интерес как разработчиков, так и пользователей
информационных систем к проблеме безопасности, что, в свою очередь, даст новый импульс развитию методов и систем
выявления уязвимостей и верификации соответствия Software требованиям безопасности.

Ключевые слова: компьютерная система; программное обеспечение; риски безопасности; угрозы безопасности.

