ISSN 2522-9052

CyuacHi indopmaniiini cucremu. 2020. T. 4, Ne 3

UDC 004. 896:681.5

Andrii Protsenko, Valerii Ivanov

doi: 10.20998/2522-9052.2020.3.15

Kharkiv National University of Radio Electronics, Kharkiv, Ukraine

COMPARATIVE ANALYSIS OF RRT-BASED METHODS
FOR PATHFINDING IN UNDERGROUND ENVIRONMENT

Abstract. The importance of finding a path for autonomous moving robots is indispensable, because the successful
achievement of the target location depends on the solution of this problem. There are a large number of different methods
of finding the way, which differ in the accuracy of work, speed, the need for additional equipment. Underground
environments, such as mines and tunnels, differ from other structures and open space, and therefore, require different
approach when performing pathfinding, as narrow, curved passages and heterogeneous structure could render some of the
pathfinding methods ineffective. However, methods based on rapidly exploring random trees (RRT) maintain their
effectiveness because they are unaffected by the complexity of the environment. In this article presented a comparison of
the three RRT-based methods: RRT, RRT-connect and RRT*.

Keywords: robot; pathfinding; autonomy; RRT.

Introduction

Performing tasks in underground spaces always car-
ries certain risks for the workers and engineers on site.
The use of robots for performing remote work helps to
reduce, prevent or mitigate these risks. To successfully
perform assigned tasks, robot must be able to reach the
designated location by solving the pathfinding problem.
There are many methods for pathfinding, however, due
to complexity and heterogeneity of environment usage
of sampling methods carries more advantages over the
others. Sampling methods are unique in that planning is
done by randomly sampling the configuration space.
Sampling methods do not guarantee finding a solution,
if any exists, that is, they do not provide completeness.
Instead, they provide a lesser idea of completeness -
probabilistic completeness. The solution will be given,
if any, with sufficient algorithm execution time (infinite
runtime in some cases). That’s could cause problems in
some cases, however it grants independence from the
complexity of the surrounding obstacles.

In our previous work [1] we noted how RRT-based
search algorithms differ from others in their simplicity
and compactness. They could provide solution fast and
without the usage of a lot of computing power. Usability
of RRT-based solutions for long-term autonomy prob-
lems in complex environments is shown in [2]. In [3]
authors used RRT* for local path planning during mine
exploration. Those examples show the practicality of the
RRT-based algorithms. However, those algorithms dif-
fer in speed and complexity, and some of them are more
situational than the others.

The purpose of the work is to analyze speed and
efficiency of the RRT-Based algorithms (RRT, RRT-
Connect, RRT*).

Rapidly-Exploring Random Trees

RRT is an efficient data structure and sampling
scheme for quick, large-scale space searches. Developed
by LaValle [4], this approach had the key of shifting the
search toward unexplored areas of space. For the first
configuration g;,;; tree with K vertices build in K-/ steps,
on each of which random configuration g...q1is selected.
After selection of gang the algorithm looks for the vertex
closest to it gnear, and creates an edge between these two

vertices, then the next one is selected gpng. RRT algo-
rithm is shown on Fig. 1.

BUILD_RRT(Gini)
1 T.init(qinit);
2 for k=1to Kdo
3 Qrand — RANDOM_CONFIG();
4 EXTEND(T, qrana);
5 Return T

EXTEND(T,q)

1 Qnear—NEAREST_NEIGHBOR(q, T);
If NEW_CONFIG(G, Grear Qnew) then
T.add_vertex(gnew);
T.add_edge(Gnear, Grew);
If Qnew = q then
Return Reached;
else

Return Advanced,

© 0o N o a A~ w N

Return Trapped,

Fig. 1. The RRT algorithm

The RRT-Connect planner is designed specifically
for path planning problems that involve no differential
constraints [5]. In this case, the need for incremental
motions is less important. It differentiates from basic
RRT by usage of two trees instead of one, and swaps
between them until they are connected. RRT-Connect
uses CONNECT heuristic instead of the EXTEND func-
tion from basic RRT. Instead of attempting to extend a
RRT by a single step, the CONNECT heuristic iterates
the EXTEND step until ¢ or an obstacle is reached.
RRT-Connect algorithm is shown on Fig. 2.

The RRT* [6] algorithm differs from the basic RRT
only in the way that it handles the EXTEND procedure.
However, it connects the new vertex, ¢, to the vertex
that incurs the minimum accumulated cost up until g,
and lies within the set g, of vertices returned by the
NEAREST NEIGHBOR procedure. This way it can
return the shortest solution out of possibly achievable
with the current number of maximum nodes. RRT-
Connect algorithm is shown on Fig. 3.

Protsenko A., Ivanov V., 2020

109

Advanced Information Systems. 2020. Vol. 4, No. 3

ISSN 2522-9052

CONNECT (T,q)

1 repeat

2 S—EXTEND(T,q);

3 until not (S = Advanced)
4 Return S;

RRT_CONNECT_PLANNER(init Ggoar)
1 Ta.init(qinic); To-init(qgoar);
for k=1to Kdo
Grand — RANDOM_CONFIG();
if not (EXTEND(T4,Grana) = Trapped) then
If (CONNECT(Ty,qnew) = Reached) then
Return PATH(T,, T);
SWAP(T,, Tp)

0 N o a A W N

Return Failure

Fig. 2. The RRT-connect algorithm

RRT_STAR_PLANNER(Ginit Qgoar)
1 T.init(Ginit. Ggoar);
for k=1to Kdo
Qrand — RANDOM_CONFIG();
COST(Grana) «— DIST (qrand, Gnear)
Qbest, Gneighbors <— FIND_NEIGHBORS(T, Grand)
for q”in Qneighbors
if COST(Grang) + DISTANCE (Grang, ¢) < COST(q)
COST (q") = COST(Grang) + DISTANCE (Grang, q)
EXTEND(T,q)
10 Return T

© O N O 0 b W N

Fig. 3. The RRT* algorithm

Experiments

For the experiments was used map of the Ivsilikat
mine, located in Republic of Tatarstan, Russia. The map
is shown on Fig. 4.

W "/ n
MRHEEH
.’1.|1:'_=r3: . if
el
USRI
N |l| I||"|]| ULI8n 17
o —.'u'. 2 _!.-l-”""
s Rl |-1.| I|I'| r J !||I‘I r'| "_h!\l.|__l-|7|'_|..* -
=f - —__.~| 7 |||Ill,|:" I,Ili__; .__III |Iq
i ahm I|'i|.” L% UL
S] ‘Eﬂ,_. L/ '
(T.I'I.-:'- L I -—_"' . ‘I-—Jlill-ﬂ.q
I e
T U U S

Fig. 4. Ivsilikat mine map

This map offers a vast, heterogeneous structure
with a lot of small openings and long passages, so it
optimal for the purpose testing performance of path-
finding algorithms.

Due to random and somewhat unpredictable
behaviors of RRT-based algorithms, number of iteration
for each part of the experiments was set to 1000. Six
experiments were conducted in total, with different
amounts of maximum nodes (1024 and 2048) for each
algorithm. Behavior of different algorithms is shown on
the Fig. 5. As can be observed, their behavior varies
differently from each other.

800

700

600

500

] 100 200 300 400 500 600 0 100 200

400 500 600 0 100 200 300 400 500 600

Fig. 5. Behavior of RRT-Based algorithms, from left to right: RRT, RRT-Connect, RRT*

Results of simulation (time/shortest path) with
maximum number of nodes set to 1024 for the RRT,
RRT-Connect, RRT* are shown on Fig. 6, 7 and 8
respectively. For the RRT with 1024 nodes, average time
in which path was found is, 2.3 seconds, with average
length of the path 776.3. Shortest path, achieved in 2.996
seconds is 694.8, shortest time, for the path 768.9, is
0.973 seconds. Algorithm failed to find the path 253
times (25.3% of total number).

For the RRT-Connect with 1024 nodes, average
time in which path was found is, 3.3 seconds, with
average length of the path 709.3. Shortest path, achieved
in 3.06 seconds is 668, shortest time, for the path 702, is
2.561 seconds. Algorithm failed to find the path 901
times (90.1% of total number).

For the RRT* with 1024 nodes, average time in
which path was found is, 29.3 seconds, with average
length of the path 693.3. Shortest path, achieved in
59.724 seconds is 616.7, shortest time, for the path 726, is
7.137 seconds. Algorithm failed to find the path 241
times (24.1% of total number).

Results of simulation (time/shortest path) with
maximum number of nodes set to 2048 for the RRT,
RRT-Connect, RRT* are shown on Fig. 9, 10 and 11
respectively. For the RRT with 2048 nodes, average time
in which path was found is, 3.3 seconds, with average
length of the path 780.3. Shortest path, achieved in
1.503 seconds is 688.6, shortest time, for the path 778, is
0.878 seconds. Algorithm failed to find the path
120 times (12.0% of total number).

110

ISSN 2522-9052

CyuacHi indopmaniiini cucremu. 2020. T. 4, Ne 3

RRT with 1024 samples

950 A

900 +

-]

v

o
\

[+
=3
o

Path lenght

750

700 -

T T T T T T
1 Z 3 4 5 6
Time, s

Fig. 6. Results of the simulation for the RRT with 1024 nodes

RRT-connect with 1024 samples

800 4
780 +
760
£
2 740 A
5
£
£ 720
700 +
680
2.‘50 2.‘75 3.60 3.‘25 3.50 3.‘75 4.60 4.‘25
Time, 5
Fig. 7. Results of the simulation
for the RRT-Connect with 1024 nodes
RRT* with 1024 samples
760
740
720
£
g‘ 700
z
=
‘© 680 4
o
660 4
640
620

Time, s

Fig. 8. Results of the simulation
for the RRT-Star with 1024 nodes

For the RRT-Connect with 2048 nodes, average time
in which path was found is, 4.3 seconds, with average
length of the path 749,3. Shortest path, achieved in 2.908
seconds is 658, shortest time, for the path 676, is 2.632
seconds. Algorithm failed to find the path 50 times (5.0%
of total number). For the RRT* with 2048 nodes, average
time in which path was found is, 37.3 seconds, with
average length of the path 687.3. Shortest path, achieved in
47.972 seconds is 613.8, shortest time, for the path 721.5,
is 8.321 seconds. Algorithm failed to find the path 132
times (13.2% of total number). Average time and path for
the RRT with 2048 nodes increased compared to the one
with 1048, in a trade for decrease of failure rate.

RRT with 2048 samples

1100 +

1000 4

900 +

Path lenght

800

T T T T T
2 4 6 8 10
Time, s

Fig. 9. Results of the simulation for the RRT with 2048 nodes

RRT-connect with 2048 samples

1000 +
950
900
£
g‘ 850
k]
£
& 800
750 A
700 4
650
3 4 5 6
Time, 5
Fig. 10. Results of the simulation
for the RRT-Connect with 2048 nodes
RRT* with 2048 samples
760
740
720 4
£
2 700
z
=
‘® 680
o
660
640
620

T T T T T T
20 40 60 80 100 120
Time, s

Fig. 11. Results of the simulation
for the RRT-Star with 2048 nodes

Conclusions

Due to basic RRT algorithm being first of it’s kind,
the average results of RRT 1024 experiment are used as
example to compare the results of other experiments.
Comparison table for all six experiments is shown on
Fig. 12. As seen in the 1024 experiment, RRT-Connect
showed better average time and average path that RRT,
however it’s success rate is tremendously low. As can be
seen from the Fig. 12, the it is most dependable on the
number of nodes. While other methods deceased failure
rate in about a half, failure rate for RRT-Connect with
1024 nodes is 86.1% higher than the RRT-Connect with
2048 nodes. RRT*, on the other hand, has higher success

111

Advanced Information Systems. 2020. Vol. 4, No. 3 ISSN 2522-9052

rate and shorter path than RRT, but takes 12.3 timeg more N Max. Average | Average | Failure

seconds to complete. As seen inn the 2048 experiment, ame Nodes time, s path rate, %

RRT-Connect hag increased tlme and path compared to RRT 1024 23 76.3 253

1024 nodes experiment due to increased number of nodes

on each tree, however it trades it for the best success rate ERrTr;ect 1024 3.3 709.3 90.1

in this series of experiments. RRT*, on the other hand, °

has the shortest path out of all the methods, but it’s time | RRT" 1024 29.3 693.3 24.1

further increased. RRT 2048 3.3 780.3 12

In conclusion, the choice of the pathfinding method [zt

should be made based on the computing power and time | connect 2048 4.3 749.3 5

available for the task. For the getting optlmal path, RRT RRT* 2048 373 6873 13.2

offer the best solution. For fast and simple pathfinding

RRT-Connect seems like a better choice. Fig. 12. Algorithm effectiveness comparison table
REFERENCES

1. Protsenko, A. & Ivanov V. (2019), “Classical methods of path planning for mobile robots”, Control, navigation and
communication systems, Vol. 3 (55), pp. 143-151, DOI: https://doi.org/10.26906/SUNZ.2019.3.143.

2. Barfoot, T. D., Stenning, B., Furgale, P., & McManus, C. (2012), “Exploiting Reusable Paths in Mobile Robotics: Benefits and
Challenges for Long-term Autonomy”, Ninth Conf. on Comp. and Robot Vision, DOI: https://doi.org/10.1109/crv.2012.58.

3. Dang, T., Khattak, S., Mascarich, F., & Alexis, K. (2019), “Explore Locally, Plan Globally: A Path Planning Framework for
Autonomous Robotic Exploration in Subterranean Environments”, [9th International Conference on Advanced Robotics
(ICAR). DOI: https://doi.org/10.1109/icar46387.2019.8981594.

4. LaValle, S.M. (1998), “Rapidly-exploring random trees: A new tool for path planning”, DOI: https://doi.org/10.1.1.35.1853.
5. Kufther, J.J., & LaValle, S.M. (2000), “RRT-connect: An efficient approach to single-query path planning”, /[EEE Int. Conf. on
Rob. and Aut. Symp. Proc. (Cat. No. 00CH37065), Vol. 2, pp. 995-1001, DOT: https://doi.org/10.1109/ROBOT.2000.844730.

6. Karaman, S. & Frazzoli, E. (2011), “Sampling-based algorithms for optimal motion planning”, The Int. Journal of Robotics
Research, 30(7), pp. 846894, DOL: https://doi.org/10.1177/0278364911406761.

Received (maaiiinua) 12.06.2020
Accepted for publication (npuitasiTa no apyky) 19.08.2020

ABOUT THE AUTHORS / BIJJIOMOCTI I[IPO ABTOPIB

ITpouenko Anapiii AnapilioBn4 — acnipanT kadenpu KOMIT IOTEpPHO-IHTEIPOBAHUX TEXHOJIOriH, aBTOMATH3aLil Ta MEeXaTPOHi-
KH, XapKiBCbKHIl HALllOHAJILHUI YHIBEPCUTET PaiioesIeKTPOHIKU, XapKiB, YKpaiHa;
Protsenko Andrii — PhD student of Department of Computer-Integrated Technologies, Automation and Mechatronics,
Kharkiv National University of Radio Electronics, Kharkiv, Ukraine;
e-mail: andrii.protsenko@nure.ua; ORCID ID: http://orcid.org/0000-0001-8754-7444.

IBanoB Bauepiii I'enHanifioBuy— kaHAUIAT TEXHIYHUX HAyK, mpodecop kadelpu CUCTEMOTEXHIKH, XapKiBChbKUH HallloHalb-
HUI yHIBEPCUTET PaJlioeNIeKTPOHiKU, XapKiB, YKpaiHa;
Valerii Ivanov — PhD (C) of Technical Sciences, Professor of Department of Systems Engineering (SysEng), Kharkiv Na-
tional University of Radio Electronics, Kharkiv, Ukraine;
e-mail: avaleriy.ivanov@nure.ua; ORCID ID: http:/orcid.org/0000-0002-6419-3759.

IopiBHAIBbHMI aHANI3 MeTOAIB, 10 0a3yl0Thed Ha RRT s nmomyky muisixy y mii3eMHHX CTPYKTypax
A. A. TIponenko, B. I'. IBanos

AHoTanisi. BajxmBicTs NoMmyKy IUISAXY JUI aBTOHOMHHUX PYXOMHX POOOTIB HE3MiHHA, aJUKE BiJ BUpIIICHHA L€l mpo-
6JIeMH 3aJISKUTh YCIIIIHE JOCATHEHHS LIbOBOTO PO3TallyBaHH:. € BeMKa KUIbKICTh PI3HUX METOJIB IOIIYKY LIUIAXY, SIKi Bifl-
PI3HSIOTBCS TOYHICTIO pOOOTH, IIBHAKICTIO, HEOOXIIHICTIO B TOAATKOBOMY ycTarKyBaHHI. [lif3eMHI cepeloBHIla, Taki sIK IIaXTH
Ta TyHeIi, BIIPI3HAIOTBCA BiJl iHIIMX CHOPYJ Ta BIAKPUTOrO IPOCTOPY, @ OTXKE, BUMAraroTh IHIIOIO IiJXOMy NpHU 3AiHCHEHH]
TOIIIYKY MapIIpyTy, OCKUIBKH BY3bKi BUI'HYTI IPOXOZM Ta T€TEPOreHHa CTPYKTYpa MOXKYTb 3pOOUTH JIesIKi METOM IIPOXOPKEHHS
Mapupyry HeeexruBHUMH. OHAK METOAM, 3aCHOBAHI Ha IIBUIKOMY J0CHipKeHHI BUunaakosux nepes (RRT), 36epirators cBoto
e(eKTUBHICTb, OCKUIBKM Ha HUX HE BIUIMBA€E CKJIAJHICTh HABKOJIMIIHBOIO CEpeloBUIA. Y Liil CTATTi NPEACTaBICHO IOPiBHAHHA
Tpbox MeroziB Ha ocHOoBI RRT: RRT, RRT-connect Ta RRT*.

Karw4dosi caoBa: pobor; nomyk Mapipyris; aBroHomist; RRT.

CpaBHHUTEJILHBIH aHAJIM3 METON0B, OCHOBAaHHBLIX Ha RRT 1151 moncka myTn B moi3eMHBIX CTPYKTYpax
A. A. TIponenko, B. I'. IBanoB

AHHOTanusA. BaxxHOCTh NOKCKa IyTH U aBTOHOMHBIX ITOABU)KHBIX POOOTOB HEM3MEHHA, BEIb OT PEIICHUs STOH Mpo-
6JIeMbI 3aBUCHUT YCIICITHOE JAOCTHIXKEHHE LIEIEBOr0 pacronoxeHust. ECTb 60i1bI10e KOIMYEeCTBO Pa3InYHbIX METOJOB MOMCKA ITy-
TH, KOTOPbIE OTJINYAIOTCS TOYHOCTBIO Pa0OTHI, CKOPOCTBIO, HEOOXOIMMOCTBIO B JIONOIHUTENFHOM 00opynoBanuu. [loasemHbie
Cpe/ibl, TaKKe KaK MAXThl U TOHHEIH, OTJIMYAIOTCS OT APYTHX COOPYXKEHHH W OTKPBITOrO MPOCTPAHCTBA, a CIEJOBATENIBHO, TpPe-
OYIOT MHOT'O ITOJIX0/Ia IIPU OCYILECTBIICHUH ITOMCKa MapIIPyTa, IIOCKOJIbKY Y3KHE N30THYThIE IIPOXOIbI M T€TEPOreHHas CTPYKTY-
pa MOTYT c/ieNaTh HEKOTOphIe METOBI MIPOXOKICH!S MapiipyTa HedddexTuBHbIMU. OJHAKO METO/IbI, OCHOBAaHHBIE HA OBICTPOM
uccieioBanny ciydaitueix nepeBbeB (RRT), coxpaHsioT cBoro 3 eKTHBHOCTE, IIOCKOIBKY HA HUX HE BIIMSIET CIIOKHOCTH OKpY-
xKatoreit cpensl. B aToit craThe npencrasieno cpaBHenne Tpex MeronoB Ha ocHoBe RRT: RRT, RRT-connect u RRT*.

Karudessie cioBa: podoT; nouck Mapupyros; aBToHoMus; RRT.

112

