Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

UDC 003.26

V. Pevnev, Yu. Trehub

doi: 10.20998/2522-9052.2020.2.21

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

ANALYSIS AND RESEARCH OF WELL-KNOWN ORCHESTRATION SYSTEMS
FOR THE CONSTRUCTION OF MICROSERVICE INFRASTRUCTURE

Abstract. Modern orchestration systems are being studied. Using different virtualization methods is it a good way to

reduce construction time, equipment costs and support system operations during infrastructure construct.

The article

provides a detailed analysis of existing virtualization tools. A comparative analysis of modern solutions shows that the
Kubernetes tool is one of the best tools for orchestration. The features of sharing orchestration systems together with
different Cloud providers are presented in the article, comparisons of the cloud providers themselves are presented too.

Keywords: virtualization technologies; orchestration systems; Docker; Docker Swarm; Kubernetes; Amazon Web

Services, Google Cloud Platform, Microsoft Azure.

Introduction

Due to the development of information
technology, the amount of data processed is increasing
every day. That is why the problems of choosing a
reliable system for storing and processing user data are
also increasing.

Based on the requirements for guarantee systems,
we can conclude that it is necessary to ensure the
availability and integrity of the information that
circulates in different information systems. Methods for
ensuring the integrity of information are given in
sufficient detail in [1].

Today we have many infrastructure systems, but
one of the most popular is Cloud systems. The choice of
the system depends on the requirements that a particular
organization applies to own IT infrastructure. A
comparative analysis of the market share of leading
cloud providers shows that 35% of the market is owned
by AWS-based systems, 11% by Microsoft Azure and
7% by Google Cloud Services. It was noted that growth
was an average of about 2% over 2018, with only
Microsoft Azure rising to 3% [2]. All of these providers
allow users to create reliable and easily scalable
infrastructure.

However, any infrastructure requires a large
amount of resources. That is why it is necessary to use
solutions that will help to use these resources
efficiently, without losing all the advantages provided
by Cloud provider. The virtualization helps users with
creating a secure, reliable and scalable infrastructure.

The main goal of the article is the comparable
analysis of well-known orchestration systems and
choosing the most secure and reliable system for the
construction of microservice infrastructure.

Analysis of orchestration systems

The main virtualization technologies are
hypervisor-based virtualization (eg, Hyper-V, Virtual
Box, VMware) and container virtualization (eg, Docker)
(Fig. 1).

Hypervisors are hardware-level virtualization.
There is a layer between the host and guest OSs that
emulates hardware.

The method of hypervisor virtualization have some
disadvantages — the decrease in efficiency and idle
computing resources, the complexity of porting various
applications between virtual operating systems, the
ability to lose all virtual machines in the event of failure
of one hypervisor on which they are installed, etc. [2].

[Application} [Application] [Application]
0s] 0s] 0s]

Virtual Virtual Virtual [Application] [Application] [Application]
machine machine machine Container Container Container
HyperV/VirtualBox Container Engine (Docker)

Kernel 0S5 Kernel 05
0s 0s
Server Server
a b

Fig. 1. Virtualization technologies (a — virtualization using hypervisor, b — container virtualization)

Container virtualization is a virtualization at the
operating system level, not hardware level, when each
guest OS uses the same kernel (and in some cases, other

parts) as the host OS. This gives the containers a big
advantage: they are smaller and more compact in
hypervisional guest environments. Container

142

© Pevnev V., Trehub Yu., 2020

ISSN 2522-9052

CyuacHi iHpopmariiini cucremu. 2020. T. 4, Ne 2

virtualization uses the capabilities of the kernel to create
an isolated environment for processes. Unlike
hypervisor-based virtualization, containers do not
receive their own virtual hardware, but use host
operating system hardware [3]. One of the features of
containers is that they can be managed (orchestrated) as
a cluster of multiple applications. A system that is a
container cluster is called a container orchestration
system. The most popular container management
systems (or container orchestration systems) are:
Kubernetes and OpenShift. There are also other
container orchestration systems, such as: Amazon Web
Services (AWS) Elastic Compute Cloud (EC2)
Container Service (ECS) and others.

Docker is a software platform for quickly
developing, testing, and deploying applications in
containers. Each container includes everything that you
need for the program: libraries, system tools, code, and
runtime. Using Docker allows you to use applications
faster and more efficiently, standardizes the operations
performed by the applications and optimizes the use of
resources. With Docker, users get an object that can be
run on any platform with high reliability. But part of the
professional systems engineers is to avoid using Docker
in production because it is not stable tool [4]. Today,
Docker is not a reliable tool for using in production, but
it continues to be used by many customers.

Docker Swarm is a tool for clustering and
managing Docker containers [5]. Clustering is an
important function of container technology because it
creates a common group of nodes that can be used to
achieve a reliability and resiliency, when one of the
nodes fails. Containers and nodes are controlled through
a manager node, which organizes and plans containers
at other worker nodes [6]. Docker Swarm is tightly
works with Docker, and developers can easily
customize it without installing additional software
services.

Kubernetes is an open source platform designed to
deploy, scale and manage a Docker or rkt container
cluster as a single system across multiple hosts. The
project was started by Google in 2014, it has invested
one and a half decades of experience with containers
[7]. Now Kubernetes has an active community and is
supported by companies such as Microsoft, RedHat,
IBM and Docker. Kubernetes has many advantages over
other container orchestration systems. It speeds up the
development process, simplifies and automates
deployments and sequential updates [8]. It also manages
applications and services, allowing to build a resilient
infrastructure that works without downtime. Kubernetes
allows to recover lost containers (in the event of a
container failure) or to find and restart existing
containers on another node (in case of a node loss).

Kubernetes clusters can run on EC2 and integrate
with other Amazon services, such as Amazon Elastic
Block Storage, Elastic Load Load Balancing, Auto
Scaling, etc. Kubernetes is still popular because has
flexible architecture, open source innovations [9].
Kubernetes has become one of the most popular
orchestration systems, ranked first on the market and
used by many real projects with great success [8], [9].

Comparative analysis
of the Docker Swarm
and Kubernetes orchestration systems

Comparative analysis of Kubernetes and Docker
Swarm shows that each container orchestrator has own
advantages and disadvantages. If you need a quick
installation and simple configuration requirements,
Docker Swarm can be a good solution. If the application
is complex and uses hundreds of thousands of
containers in production, then Kubernetes should be
selected. Although both orchestrators have the same
functions, but they have a fundamental differences
between their work. Below are the biggest differences
between these two platforms.

Cluster installation and configuration. Docker
Swarm is much easier to set up, it doesn't take a lot if
time to deploy a container group. Along with ease of
use, Swarm also provides flexibility by allowing any
new node to join existing cluster as manager or
employee, and move or manage the nodes and their
roles. Each node encrypts the data before sharing with
neighboring nodes. Shared data encryption keys are
stored in the master nodes inside Swarm, only hosts in
that cluster can access cluster management.

Kubernetes requires several manual configurations
to connect components. Before starting the Kubernetes
should also know a lot of the cluster configuration, as
the IP addresses of the nodes, which role each node
must take, and how many nodes they have in common.
Kubernetes allows you manually manage settings and
access to containers from the outside. Also, there is a
Pod Network Communications Policy the main load is
on pods, that contained of one or more containers that
are deployed together. Kubernetes assigns each pod an
IP address that can be routed from all other pod, even
through major servers. Kubernetes network policies set
access permissions for pod groups, similar to security
groups, which are used to control access to VM
instances.

Customize the container. The Swarm API
provides much of the functionality from Docker, but
does not cover all of commands. It supports many tools
that work with Docker, but if the Docker API lacks a
specific operation, there is no easy way to get around it
with Swarm. Kubernetes uses own client definitions,
APIs and YAML files, which are different from the
standard docker equivalents. Using them, you can easily
manage containers and the Kubernetes cluster.

Scalability. Docker Swarm deploys containers
faster than Kubernetes in very large clusters and high
clustering stages, allowing you to quickly respond to
scaling as needed. You can run new replicas with one
upgrade command. The complexity of Kubernetes stems
from providing a unified API suite and reliable cluster
state guarantees that slow container deployment and
scaling.

Accessibility. Kubernetes and Docker Swarm
provide high availability of replication services. The
same service is deployed to multiple nodes to provide
redundancy. If the host that runs the service has shut
down, the service is being redistributed on the other

143

Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

hosts. It makes services are self-renewing. Although any
of the orchestral containers can run on the same server,
true redundancy requires additional nodes.

Load balancing. Docker Swarm provides built-in
load balancing. All containers in a single cluster are
connected to a shared virtual network that allows
connection from any node to any container. Docker
Swarm also does not allow managing the internal
balancer on a node and is bound to ports on which
containers are deployed. Kubernetes allows you to
manage and adjust load balancing. Each service is
accessible through a set of rules that can be accessed
without worrying about ports, IPs, and other physical
settings.

Container updates and cluster restore. The
Docker Swarm container is upgraded by telling the

planner to use the new image instead. You can then roll
out the updates, preventing the service from shutting
down and letting you roll back if something goes wrong.
Kubernetes processes the upgrade process by gradually
tracking the health of the service to maintain
accessibility throughout the upgrade process, making
changes to one each container incrementally.

Table 1 gives the results of comparative analysis.

The choice of orchestration system depends on the
tasks and goals that you want to achive. If you need a
simple system that does not require additional
configuration and allows you to quickly build a cluster,
then you can choose Docker Swarm. But if you want to
run more containers in a secure and well-tuned
environment, then you need to choose the Kubernetes
orchestration system.

Table I - Comparative analysis of Docker Swarm and Kubernetes

Criterion for comparison

Docker Swarm

Kubernetes

Cluster installation

Easy and quick to install and configure.

It takes some time to install and configure.

Customize the container the Docker APL

Functionality is provided and limited by

Client definitions, APIs and YAML are
unique to Kubernetes.

Scalability

Quick deployment and scaling in not very
large clusters. Adding a new node does not
require additional master node settings.

Quick deploy and scale in very large
clusters. Adding a new node requires
additional master node settings.

Accessibility

High availability is ensured through the replication of containers, their constant
monitoring and maintenance.

Load balancing any cluster node.

Automated internal load balancing across

You can manually adjust the internal load
balancing.

Container updates and cluster

Early planning of service maintenance

Progressive updates and health monitoring

restore processes during the upgrade. through updates.
— etcd is an instance that stores the status of the
Research on Kubernetes . .
lust hitect master server. It provides reliable storage of
cluster arcintecture configuration data and notification of different changes;
The main function of Kubernetes is the — Kubernetes API Server is an API that enables API

orchestration of containers, the scheduling of containers
of varying capacity on physical and virtual devices.
Containers must be packaged efficiently, and they must
comply the constraints that imposed by the deployment
environment and cluster configuration. In addition, the
Kubernetes platform must monitor all running
containers and replace those that have failed, failed, or
experienced any other difficulties.

The Kubernetes architecture is designed to extend
the cluster and consists of two nodes: a master server
and a large number of working servers which called
worker nodes (Fig. 2). The master node performs the
main function and manages the cluster. Worker nodes
cannot function properly without a working master node
and are only used to deploy Kubernetes objects.

A. The main elements of the Kubernetes cluster

The Kubernetes cluster include:

— node is a cluster server or virtual machine;

— pods are containers that are grouped together,
typically, pod includes from 1 to 5 containers;

— services is an abstraction over pods that defines
the access policy for them. Service automatically
distributes load between nodes, finds and route traffic to
the required container;

server to work. It is intended to be a CRUD server with
embedded business logic implemented in separate
components or in plugins. It basically handles REST
operations, checking them and updating the objects in etcd,;

— scheduler binds pod to node via call API,;

— Kubernetes Controller = Manager Server
responsible for other cluster level functions. For
example, the nodes are detected, managed, and
controlled by node controller. As a result, this entity can
be divided into separate components to make them
independently connected;

— replication controller is a mechanism based on
the pod API. Responsible for the number of pods;

— kubectl is a command line interface for
managing Kubernetes;

— kubelet manages pod, their containers, images,
partitions, etc;

— kube-proxy is a simple proxy balancer. This
service is started on every note and configured in the
Kubernetes API. Kube-Proxy can perform the simplest
redirection;

— volumes is a directory (section) with data in it
that is available in the container. This directory is the
shared between the container and the nod.

144

ISSN 2522-9052

CyuacHi iHpopmariiini cucremu. 2020. T. 4, Ne 2

VAML — kubelet
@ kube-proxy
kubect! ‘ |
(=] (=) =1
APl
Docker
Controll:
;:n;ageir Scheduler Werker node 1
efcd kubelet
kube-proxy
Master node i i
(=] (=) (=]
Docker

Worker node n

Fig. 2. Master node and Worker node architecture

The main benefits of the Kubernetes cluster.
Kubernetes allows you to quickly and efficiently deploy
applications, scale at runtime, integrate new features,
and use only the resources you need, optimizing your
resources.

Kubernetes fully supports the DevOps model and
allows you to manage full application lifecycle.

The following benefits of Kubernetes can be
distinguished:

— scalable. Software can be deployed via pods,
deployment process can be scaled or disabled;

— monitoring. Kubernetes lets you track
completed, incompleted, and unsuccessful deployments
with the ability to query the status of each container;

— version control. Kubernetes allows you to
update Pods which have been deployed, using newer
versions of applications and revert to the previous
deployment if the current version is not stable.
Kubernetes provides an option to revert to an earlier
version if the application deployment process fails;

— horizontal scaling. Kubernetes automatically
deploys the number of application deployment replicas
based on the using defined server resources (within
defined limits);

— self-healing. Kubernetes has different features
such as auto-reload, replication, placement, scaling, and
container load balancing.

Also, Kubernetes has its own disadvantages. These
include the lack of properly built documentation and the
high complexity of cluster construction. Compared to
other orchestration systems such as Docker Swarm,
Kubernetes is more difficult to understand but more
reliable orchestration systems.

Kubernetes cluster
and Cloud providers

Cloud providers like Amazon (AWS), the Google
Cloud Platform (GCP), and Microsoft Azure (MA) have
services capable of configuring Kubernetes clusters.

Amazon Web Services. AWS is a public cloud, is
the first in the public cloud market, with a huge and
growing suite of available services, as well as the
world's largest network of data centers [1]. AWS has its
own ECS container orchestrator, but it's different from
Kubernetes.

The Kubernetes Operations (kops) project has
become the standard for creating, upgrading and
managing Kubernetes clusters on Amazon Web
Services [7].

Advantages of using Kubernetes with AWS
Kubernetes is node updates, additions, and deletions.

The disadvantages of using Kubernetes with
Amazon Web Services:

— lack of support for Kubernetes in the Amazon
Web Services Management Console;

— no backup;

— high cost of use.

AWS uses a several payment models. You only
pay for the resources and services you use. The more
resources you use, the less the cost of services provided.
Amazon Web Services rounding works based on hours
ofuse [1], [7], [10].

Microsoft Azure. Microsoft Azure - Microsoft's
cloud platform. Azure Kubernetes (AKS) fully managed
service makes it easy to deploy and manage container
applications. AKS does not include features for

145

Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

updating the cluster after it is deployed. To upgrade
clusters with AKS, you need to use AKS to create a new
cluster, move containers to it, and remove the old
cluster [10, 11].

Advantages of using Kubernetes with Azure
Kubernetes:

— cluster backup is a feature of AKS;

— the Azure Management Console supports some
operations with Kubernetes. You can add or delete work
nodes by command in console.

The disadvantages of using Kubernetes with
Microsoft Azure is the non-automated Kubernetes node
upgrade.

Microsoft Azure uses a more flexible pricing
system, payment for the use of cloud resources, with
rounding by the minute [2].

Google Cloud Platform. Google Cloud Platform
is the third in the market because it doesn't have so
many different services and features as Amazon Web
Services and Azure Cloud providers. However, Google
offers significant scaling and load balancing. Load
balancing is a major feature because Google provides a
built-in general load balancer that is automatically
configured when creating services.

In Amazon Web Services and Azure, the load
balancer is another instance of a container that needs to
be scaled.

Advantages of using Kubernetes with Azure
Kubernetes:

— management of host and worker nodes is
possible through the available GCP management
console;

— management of master and worker nodes is
possible through the available GCP management
console;

— global zoom and built-in load balancer.

The disadvantages of using Kubernetes with GCP
is that some features cannot be changed or configured.

The Google Cloud Platform has a similar billing
system as Azure, but with a rounded usage of resources
over a period of 10 minutes [2]. Google Billing also
takes into account the network traffic used by the
features in the aggregate.

Conclusion

The Docker Swarm and Kubernetes are two of the
most popular container orchestration systems today.

Kubernetes is the most popular system that builds
an efficient container system for cluster nodes,
depending on current load and available services.
Kubernetes is suitable for deploying infrastructure that
requires a large amount of resources. It allows you to
manage a large number of hosts, run multiple

Docker containers, monitor their status, monitor
collaboration, perform load balancing. Kubernetes also
allows you to build a big reliable system. Compared to
other orchestrators, Kubernetes is the best in terms of
fault tolerance.

But Kubernetes has one major disadvantage -

incomplete documentation, especially for such a
complex orchestration system.
Docker Swarm is the second container

orchestration system.

The advantage are simplicity, the relative ease of
operation and speed of development. The disadvantage
is the functionality, which does not allow to build a
reliable container management system.

The choice of orchestration system depends on the
tasks and goals of your project. If you need a simple
system, you can choose Docker Swarm. But if you want
to run more container clusters with high reliability, then
you need Kubernetes.

REFERENCES

1. Pevnev V.Ya. “Metody obespecheniya tselostnosti informatsii v infokommunikatsionnykh sistemakh”. Visnik Natsional'nogo

tekhnichnogo universitetu KhPI. 2015. Ne 51. pp. 74-77.

2. Hypervisor [online] Available at: https://en.wikipedia.org/wiki/Hypervisor.

W

Gipervizor i ego rol' v virtualizatsii [online] Available at: https://vps.ua/blog/hypervizor-and-virtualization/ .

4. Sistema upravlinnya obchislyuval'nimi resursami zastosunkiv v umovakh konteinernoi virtualizatsii (2018). Kubernetes.
[online] Available at: http://ela.kpi.ua/bitstream/123456789/25529/1/Zagorulko_magistr.pdf.

(9]

Docker Documentation. (2019). Swarm mode overview. [online] Available at: https://docs.docker.com/engine/swarm/

6. Mesosphere.github.io. (2018). Marathon: A container orchestration platform for Mesos and DC/OS. [online] Available at:

https://mesosphere.github.io/marathon/.

7. Amazon Web Services, Inc. (2019). Amazon Elastic Container Service — ¥Ynpasnenue konmetinepamu Docker — AWS.

[online] Available at: https://aws.amazon.com/ru/ecs/.

*

Docker swarm vs Kubernetes [online] Available at: https://habr.com/ru/company/d2cio/blog/349138/ .

9. A comparative analysis of two container management systems: docker swarm and kubernetes [online] Available at:

http://synergy-journal.ru/archive/article2263/.

10. Sravnenie uslug oblachnykh provaiderov: Microsoft Azure, AWS ili Google Cloud. [online] Available at:
http://la.by/blog/sravnenie-uslug-oblachnyh-provayderov-microsoft-azure-aws-ili-google-cloud/.

11. Publishing, Jie Xiong, (2018). Cloud Computing for Scientific Research. school of Electronics and Information, Yangtze

University, China.

Received (Haniiina no penxonerii) 14.02.2020
Accepted for publication (CxBanena no npyky) 22.04.2020

B1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

ITeBneB Bonogumup SIKoBJIEBHY — KaHIMIAT TEXHIYHUX HAYK, JOLEHT, ZOLUEHT Kadeapu KOMII'IOTEPHHX CHUCTEM, MEpEexX Ta
kibepbOesneku, Hanionansuuii aepokocMmiunuii yHiBepcuret iMeni M.€. XykoBcbkoro «XAl», Xapkis, YkpaiHa;

146

ISSN 2522-9052 CyuacHi indopmaniiini cucremu. 2020. T. 4, Ne 2

Volodymyr Pevnev— Candidate of Technical Science, Associate Professor, Associate Professor of Computer Systems,
Networks and Cyber security Department, National Aviation University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: v.pevnev@csn.khai.edu; ORCID ID: http://orcid.org/0000-0002-3949-3514.

Tpery6 IOuais BosogummupiBHa — MaricTpanTka Kadenapu KOMI'IOTEPHHX CHCTEM, Mepex 1 KibepOesmexu XapKiBChKOro
HalliOHAJILHOTO aepoKocMivHoro yHiepcurery iM. M.€. JKykoBcbkoro, Xapkis, YkpaiHa;
Yuliia Trehub — Master's Degree in Computer Systems, Networks and Cyber Security, Kharkiv National Aerospace
University. M.E. Zhukovsky, Kharkiv, Ukraine;
e-mail: j.tregub@student.csn.khai.edu; ORCID ID: http://orcid.org/0000-0003-1495-3112

AHaJTi3 Ta JOCJII7KeHHs BIIOMUX CHCTEM OpKecTpamii
U151 MO0y yBaHHS MiKPOCePBiCHOI iHpacTPyKTYpH
B. 4. I1eBHes, 10. B.Tperyo

Anotanisi. I[IpenmeroM BUBYEHHSA B CTATTi € CydacHi cucreMu opkecrpauii. IIpu po3poOui, st CKOpOUeHHs dacy
noOynyBaHHs iHQPACTPYKTYpH Ta 3MEHILCHHS 3aTpaT Ha oOJIaJHaHHA Ta MiATPUMKY POOOTH CUCTEMH, iCHye BelMKa 1orpeba y
3aCTOCYBaHHI Pi3HMX MeTOAIB Bipryanizauii. OCHOBHUMHM TEXHOJIOTiIMU BipTyani3awii € BipTyaJlizalisi HdA OCHOBI BUKOPUCTAaHHS
rinepBizopa i KoHTeliHepHa BipTyanizauis. HaliOinplu nomynsipHUMH CHCTEMaMM YIpPaBlliHHA KOHTelHepamu (abo cucremamu
opkecrpauii koHTelHepiB) € Kubernetes Ta Docker Swarm, o6uzBi 3 skux 6a3yrorbes Ha ruiardopmi Docker. Buxopucranus
ofiHi€l 13 HUX J103BOJIIE IUBHAMIE 1 edeKTUBHILIE PO3pOOIIIOBATH ONATKU, CTAaHIAPTU3YE BUKOHYBaHI JIOaTKaMH orepauii Ta
ONTUMI3ye BHKOpPHUCTaHHs pecypciB. 3aBisiku Docker xopucTyBadi OTpUMYIOTH O0'€KT, SIKMH 3 BHCOKOIO HaAilHICTIO MOXKHA
3amyckaTi Ha Oynp-skii miatgopmi. Takoxk, y CTaTTi HaBeleHO OCOOIMBOCTI CIIBHOTO BHKOPHCTaHHS CHCTEM OpKecTpamii
pazom 3 pizHumMu Cloud npoBaiinepamu, a TaKOX MOPIBHAHHS CAMUX XMapHHX IOCTadajbHUKIB. MeTo € jeTanbHUN aHAwi3
ICHYIOUMX 1HCTPYMEHTIB OpKecTpaLiil KOHTeiHepiB, IPOBEICHHS NOPIBHIBHOI XapakTepuctuku Kubernetes i Docker Swarm, ta
BHOip Kkpamioi i3 Hux. PesyabTarn nopisusuas Kubernetes Ta Docker Swarm moka3yiots, mo Kubernetes — oquH i3 HalKkparmx
iHcTpyMeHTiB opkecTpauii. Kubernetes miaxoauTs uist po3ropTaHHs iHQpacTpyKTypH, sika noTpedye BEIMKOI KiJbKOCTI pecypciB,
Ta JI03BOJIsIE OOCIYrOBYBATH BEJIMUYE3HY KiNBKICTh XOCTIB, 3allyCKaTH Ha HMX 4YHCICHHI KoHTeitHepu Docker, Bincrexysaru ix
CTaH, KOHTPOJIOBATH CIIUIBHY poOOTYy, MpoBOIUTH OallaHCyBaHHS HaBaHTakeHHS. Kubernetes nossomste moOynyBaTv HaniiiHy
cucteMy. Y TOpiBHSHHI 3 iHIIMMH opkecTparopamu, Kubernetes € HallkpaIium 3 TOUKH 30py peatizamii BiJMOBOCTIHKOCTI. SIKIIo
NOTpiOHE LIBUJIKE HANAIITYBAHHA 1 € MPOCTi BUMOrH 10 KoHGirypaii, Docker Swarm Moske cTaTé XOpOLIUM BapiaHTOM 3aBJISKH
cBoiii mpocrori. BucHoBkn. CbhorosHi Ha PUHKY HIPEICTAaBICHO ABI cUCTeMH opkecrpauii koHreiHepiB: Docker Swarm Tta
Kubernetes. Kubernetes — HaiinonysspHima cucrema, sika BuOy1oBye eheKTUBHY CUCTEMY OpPKECTpallii KOHTeHHepiB 10 By3ax
KJIacTepy B 3aJIeKHOCTI Bijl IOTOYHOIO HABAHTAKEHHsI 1 HasBHUX 1OTped B podori cepsiciB. Docker Swarm — npyra, ane G6inbiu
MIPOCTa 3a peai3alli€lo CHcTeMa OpKecTpalii KoHTeiHepiB. Bubip cucreMu opkecTpamii 3ale)kuTh Bill IIOCTAaBICHUX 3aBlaHb.
Skmo mnorpibHa mpocra cucrema, MokHa BuOparm Docker Swarm. Ane skmo norpiOHO 3amyckaTH OUIBIYy KUIBKICTB
KOHTEHHEepHUX KJacTepiB, TOA noTpiOHO BUKkopucroByBaTH Kubernetes.

KawuyoBi caoBa: Texsonorii Bipryamizamii; cucremu opkecrpauii; Docker; DockerSwarm; Kubernetes; Ansible;
Terraform; Amazon Web Services, Google Cloud Platform, Microsoft Azure.

AHAJIN3 M MICCJIEIOBAHNE H3BECTHBIX CHCTEM OPKeCTPALMHU
AJIS IOCTPOEHMsI MUKPOCEPBHCHON HH(PACTPYKTYPbI

B. 4. IeBHes, 0. B.Tperyo

AnHoTanus. IIpeaMeToM H3ydeHHS B CTaThe SIBISIOTCS COBPEMEHHBIE CHCTEMbI opkecTpauuu. IIpu paspabotke, mis
COKpAILEHHs] BPEMEHH IIOCTPOSHHUsI HHPPACTPYKTYPHl M YMEHBIIECHHUS 3aTPaT Ha 000pPYIOBaHUE U TOANCPIKKY PaOOThl CHCTEMBI,
CyliecTByeT Ooibllas HOTPEeOHOCTh B IPHUMEHCHHM pa3IMYHBIX METOINOB BHUPTyaiu3aluy. OCHOBHBIMH TEXHOJOIMSMH
BUPTYaIU3aLUHK SBISCTCS BUPTYAIM3aLlysl Ha OCHOBE HCIIONB30BaHNUs THIIEPBH30pa M KOHTeiHepHas BupTyanusanus. Haubomnee
HOMYJSIPHBIMU CHCTEMaMH YIPAaBJICHHsI KOHTeHHepaMu (WIM CUCTEMaMU OpKeCTpalu KOHTeHHepoB) sBistorcs: Kubernetes u
Docker Swarm, o6e u3 koropbix Gasupyrorcs Ha miatdopme Docker. Vcnonp3oBanue omHON M3 HUX MO3BOJSIET OBICTpee U
s dexTnBHEE pa3pabaTHIBATh NPIIOKEHUS, CTAHAAPTH3UPYET BBIIONHACMBbIC NPHIOKSHHSAMY ONEpalid H ONTHMH3UPYET
Ucronp30BaHue pecypcoB. brnaromapst Docker monp3oBaTesid MONYYaloT OOBEKT, KOTOPBIH C BBICOKOM HAIEKHOCTBIO MOXHO
3amyckath Ha Jito0oii matdopme. Taxoke, B cTaThe MPUBEIEHE! OCOOCHHOCTH COBMECTHOT'O HCIIONIb30BAHMS CHCTEM OPKECTPaLHU
BMecTe ¢ pasnrunsivMu Cloud mpoBaiinepamu, a Takke CpaBHEHHE CaMUX 00Ja4HBIX ITOCTABINMKOB. I{eJIbI0 SBIISETCS eTalbHBII
QHAJIM3 CYLIECTBYIOIIMX HHCTPYMEHTOB OPKECTPALIM KOHTEHHEPOB, IPOBEICHNE CPaBHUTEIBHOI XapakTepucTuku Kubernetes u
Docker Swarm, u BeIOop ay4iueil n3 Hux. Pesyabrarsl cpaBaenns Kubernetes u Docker Swarm nokassiBator, uro Kubernetes -
OZIMH U3 JIyYIIMX MHCTPYMEHTOB OpkecTpauuy. Kubernetes oaxomur s pa3BepThIBaHUS HHOPACTPYKTYpHI, KOTOpas TpeOyeT
GONBIIOrO KOINMYECTBA PECYPCOB, M IO3BONSET OOCIYXHBaTh OFPOMHOE KOJNMYECTBO XOCTOB, 3allycKaThb Ha HUX
MHOTOYMCIICHHbIe KOHTeifHeps! Docker, OTCIe}uBaTh HMX COCTOSHHE, KOHTPOJIMPOBATH COBMECTHYIO pPabOTy, MPOBOIMTH
GaylaHCHPOBKY Harpy3ku. Kubernetes mo3BoiseT HMOCTPOUTH HaJeXHYyIO cucTeMy. 110 CpaBHEHHIO C IPYTMMH OPKECTPaTOp
Kubernetes sBIseTCs HAWIYYLIAM C TOYKU 3PEHUS peaM3aliMyl OTKa30yCTOMYMBOCTH. Eciy TpeOyloTcst ObICTpbIe HACTPOHKH K
TpeGoBaHUs K KOH(MUIypalmu NpocTsl, To Docker Swarm MoXeT cTaTh XOpOIIMM BapHaHTOM OJarojaps CBOEH MpOCTOTe.
BeiBoabl. CeromHs Ha pBIHKE INPEICTaBICHBI JBE CHCTEMBI OpKecTpanmu KoHTelHepoB: Docker Swarm u Kubernetes.
Kubernetes - camast HOIyJIsIpHas CUCTEMa, KOTOpasi BHICTpauBaeT () (HEKTUBHYIO CHCTEMY OPKECTPALMH KOHTEHHEPOB 110 y3J1aM
KJIacTepa B 3aBHCUMOCTH OT TeKyILeH Harpy3Kd U MMEIOIUXcsi oTpeOHocTel B pabore cepsucos. Docker Swarm - Bropas, HO
Goiee mpocTas 1Mo peaan3alyy CUCTeMa OPKECTPaIMi KOHTeHHEpOB. BEIOOP CHCTEMBI OPKECTPALMK 3aBUCUT OT IIOCTaBJICHHBIX
3ama4. Ecnu HyxHa mpocrast cucrtema, MOXKHO BbIOpaTh Docker Swarm. Ho ecinm HyxHO 3amyckaTh GoJbluee KOJIHYECTBO
KOHTEHHEPHBIX KJIaCTepPOB, TOTAa HyXHO BEIOHpaTh Kubernetes.

KaoueBble cJioBa: TEXHONOTMH BHPTyalU3aluM; cHCTeMbl opkectpamuy; Docker; DockerSwarm; Kubernetes;
Ansible; Terraform; Amazon Web Services, Google Cloud Platform, Microsoft Azure.

147

