ISSN 2522-9052

CyuacHi iHpopmariiini cucremu. 2020. T. 4, Ne 2

UDC 004.932

doi: 10.20998/2522-9052.2020.2.13

K. Dergachov, L. Krasnov, O. Cheliadin, R. Kazatinskij

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

VIDEO DATA QUALITY IMPROVEMENT METHODS AND TOOLS
DEVELOPMENT FOR MOBILE VISION SYSTEMS

Abstract. Subject of study. The article proposes new methods of input and preliminary processing of video data for web-
and specialized pi-cameras in monocular and stereo vision systems based on Raspberry Pi microcomputers to improve the
quality of work of modern mobile vision systems. This approach is always relevant, since the design of modern vision systems
constantly requires new non-trivial hardware, algorithmic and software solutions. Objectives. The goals are to compare quality
indicators of the known methods of input and preliminary processing of video data in vision systems and to develop new
methods and algorithms providing better speed, the necessary frame resolution and the independence of the frame brightness
from changes in scene illumination while reading video data. Methods used. The paper formulates a comprehensive criterion
for improving the quality of the Raspberry Pi microcomputer video input and preprocessing video data. Based on the accepted
quality indicators (video input speed, resolution, and stability indicators of average brightness of the current frames of the
received video stream), video input and preprocessing algorithms that satisfy the specified requirements are synthesized. This
allows to find the optimal method for processing video data and to overcome the contradiction of reducing the input speed due
to the need of increasing the resolution of video frames for each project. The created universal program for input and
preliminary processing of these data allowed to obtain quantitative estimates of the effectiveness of the developed algorithms
and formulate recommendations for their further use. All this allows you to significantly increase the efficiency of using
Raspberry Pi microcomputers in modern mobile vision systems. The results obtained are the basis for the creation of a
universal software product for high-speed input (in real time) and preliminary processing of video data for face detection and
recognition systems, as well as stereo vision systems. Conclusions. The conducted experimental studies confirmed the
efficiency and effectiveness of the proposed methods and algorithms for high-speed input of video data with different values of
the resolution of the frame and the ability to adaptively adjust its brightness. Based on the created methods and algorithms,
various options for its software implementation are proposed. This allows us to recommend the results for practical use.
Prospects for further research include the expansion of the vector of criteria for assessing quality and features for optimizing
video data, as well as the creation of new algorithms and various versions of programs based on them.

Keywords: Raspberry Pi microcomputer; algorithms and program codes for input and preprocessing of video data;

OpenCV library functions.

Introduction

Rapidly developing mobile application engineering
actively uses vision systems (here in after — VS) based on
small-sized video recorders and micro-computers.

The need for such systems is especially big in
robotics, when equipping unmanned aerial vehicles,
automobile vehicles etc.

Subject of study. When designing mobile small-
sized VS, designers of hardware and software systems
must first solve a number of serious problems associated
with choosing an economical autonomous power supply,
a microcomputer with sufficient speed and memory
capacity, suitable video recorders and modern software.

In addition, even at the stage of preliminary design,
it is necessary to introduce quality criteria for the
received video information, which correspond to
accepted standards and allow using the available
hardware and software resources with maximum
efficiency.

The main difficulty in building modern mobile VS
is the lack of a unified approach to the selection of
suitable microcomputers, cameras, and methods for
inputting and pre-processing video data in the conditions
of limited resources of the processing system for speed.
Therefore, we will conduct a comparative analysis of
known methods and means, and also consider in detail
new technical solutions. Such a task is quite modern and
relevant, since designing effective VS requires new
approaches, non-trivial hardware, algorithmic and
software solutions.

The goal of this study is analysis of well-known
methods of input and preliminary processing of video
data during VS implementation, development and
creation of new algorithms and software tools guaranteed
to ensure high quality of the original video data and real-
time processing of video information.

Assessment of the quality and effectiveness of new
methods and means of obtaining and processing video
data must be carried out in laboratory conditions, and the
reliability of the results should be checked by statistical
analysis of the data.

1. Problem statement

Criteria for assessing the quality of the source
video in VS. A systematic analysis of existing methods
of input and processing of video data in various VS is
possible only on the basis of objective quality criteria.
To create them, we introduce the following indicators,
define and decode the corresponding abbreviations:

e FPS — (Frame per second). This value
characterizes the speed of changing / reading frames of
the recorded video stream. The maximum FPS value is
limited by the passport data of the camcorder used;

e FR — (Frame Resolution) describes the
resolution of the video frame in pixels (320x240,
640x480, 1280x960, etc.);

e FMB — (Frame medium brightness). This is an
indicator of the average level of brightness of the frame,
objectively reflecting the degree of illumination of the
scene at the current time.

These are the most important indicators mainly

© K. Dergachov, L. Krasnov, O. Cheliadin, R. Kazatinskij, 2020

85

Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

determine the quality indicators of the video processing
system in VS.

Traditional methods of capturing video data
significantly slow down the processing speed of video
data, which often seriously limits the ability to work in
real time. However, using multithreading can
significantly reduce the impact of Input/Output latency,
leaving the main thread without blocking. Therefore,
there is the possibility of increasing FPS up to the
technological limit of the camcorder used.

It is clear that in solving problems of video data
visualization, the desire to improve quality by
increasing the resolution of the frame (FR) is always
justified. However, it should be noted that a large
increase in the number of pixels in the frame will
inevitably lead to a slowdown (decrease in the FPS). At
the same time, a compromise can be found
experimentally - using the proposed new effective
algorithms for capturing and entering video data.

Note that the knowledge of the video stream frame
medium brightness (FMB) in conditions of high
variability of the illumination of the scene is very
useful. This allows, by performing threshold
procedures, to set the mode to enable / disable
contrasting (equalization) of the frames of the video
stream. In addition, with a low level of frame brightness
(by comparing FMB with a predetermined threshold) in
long-term video surveillance systems, it is convenient to
turn on/off the backlight of the camcorder.

Based on the accepted quality indicators, the
authors will further formulate recommendations on the
construction of high-quality video input algorithms for
modern mobile VS and give examples of their practical
implementation.

2. Review of the literature

Key resources for building mobile VS. Consider
more carefully and evaluate in detail all aspects of
projects for the construction of modern mobile VSs
systems. In this case, we will be guided by the accepted
criteria for the quality of video data and rely on the
available data of modern literature and internet resources.

Computers for mobile VS. To meet the needs of
this market segment, a fairly large number of
microcomputer models (Lego, Intel Galileo, Android
I0IO OTG, Arduino, etc.) are now available. However,
the Raspberry Pi platform holds strong leadership in this
series [1 - 4]. It is represented by a line of models having
various hardware implementations at affordable prices.
The best of them are comparable in performance to
desktop PCs. So the Raspberry Pi 4 Model B has 4 GB of
RAM, a fast 4-core processor (1.5 GHz), support for two
displays with a resolution of up to 4K, Gigabit Ethernet,
USB 3.0, Wi-Fi, Bluetooth 5.0 and power via USB -C
(5V/3A). Most importantly, the Raspberry Pi 4 has two
USB 3.0 ports. They are 10 times faster compared to
USB 2.0 and are well suited for connecting fast
peripheral units (flash drives, web-cameras, etc.).

Digital video recorders (DVRs) for mobile VS.
Typically, mobile VS are equipped with low-cost, low-
resolution, non-calibrated web cameras that can be
connected to the Raspberry Pi via USB ports. This

method of organizing video surveillance has several
disadvantages. The main one is that when synthesizing
stereo vision systems, you cannot use one USB bus. This
eliminates the possibility of camera synchronization and
significantly reduces the total system bandwidth. At the
same time, it is difficult to take into account the
desynchronization due to the multitasking of modern
operating systems and the functioning of the task
scheduler. Camera desynchro-nization of not more than
10 ms is acceptable [7].

Specialized pi-cameras for Raspberry Pi boards
have higher quality than web-cameras. They are used for
monocular video surveillance systems. For example, the
Raspberry Pi Camera Module v2 is a high-quality Sony
IMX219 image sensor with a fixed focus. It connects to
the microcomputer board using a special CSI interface
(Camera Serial Interface). The sensor measures 25mm x
23mm x 9mm and weighs 3g. A short ribbon cable is
used to connect to the Raspberry Pi. Key features of this
sensor are:

e 8 megapixel camera capable of taking photos
with a resolution of 3280 x 2464 pixels;

e Video recording with a resolution of 1080 p
30 FPS, 720 p 60FPS, 640 x 480 p 60/90FPS;

e Software is supported in the latest version of the
Raspbian Operating System;

Here and further these abbreviations are used:
p — pixel, FPS — frame per second.

Note that for a long time there was no technical
solution for the implementation of a stereo pair with two
pi-cameras. This is due to hardware design limitations —
standard Raspberry Pi models contain only one camera
port. To date, the problem has been resolved by the
efforts of Arducam, which released the HAT stereo
camera for the Raspberry Pi [13]. It allows to connect two
S5-megapixel OV5647 or two 8-megapixel pi-cameras
IMX219 to a standard Raspberry Pi board via an
additional expansion board and simultaneously capture
images or video. It is very important that both cameras
are fully synchronized (accurate to units of ns). Further
details on the use of this technology will be described
below.

Programming tools. Raspberry Pi computer-based
vision systems software typically uses the developer-
recommended Raspbian operating system and the Python
programming language. Python, as a modern object-
oriented language, is most often used to program General
Purpose Input/Output (GPIO) I/O ports on the Raspberry
Pi and is part of the Raspbian operating system. It is
possible to connect a large number of specialized libraries
to Python, expanding the capabilities of solving the
problems of necessary applications. It is especially
important that in conjunction with Python you can use
OpenCV — a library of algorithms for computer vision,
image processing and general-purpose numerical
algorithms with open source [6-12]. The convenience of
working with Python also consists in the possibility of
working with the Windows operating system (on a
personal computer) and on the Raspberry Pi
microcomputer with the Raspbian operating system.
However, it is necessary to ensure that the versions of the
libraries used in the project are completely identical.

86

ISSN 2522-9052

CyuacHi iHpopmariiini cucremu. 2020. T. 4, Ne 2

In addition to the listed requirements in VS, it is
necessary to carry out data input from video cameras in
real time, and at the same time carry out complex video
processing. In monocular video surveillance systems, for
example, this is the task of detecting and recognizing faces,
and in stereoscopic systems it is the task of constructing
depth maps and volumetric reconstruction of the scene. In
severe conditions of limited resources (hardware and
software), they often resort to multi-threaded processing of
the original video data, which can significantly improve the
performance of video processing.

3. Materials and methods

Tools for constructing video data input
algorithms. When performing the work, the authors
used the following hardware and software resources:

Hardware. To conduct experimental studies, a
laboratory bench was created on the basis of the
Raspberry Pi 3 Model B microcomputer and a set of one
or two web cameras and a pi camera. The appearance of
the laboratory bench is shown in FIG. 1.

Fig. 1. Fragments of the laboratory installation

Identical FC-250 web-cameras (FPS = 30 at
resolution FR = 1280x960) are designed to create sterco
pairs with the ability to connect them to a computer via
USB ports.

The design features of the stereo pair are shown in
FIG. 1, c. When cameras are rigidly mounted relative to
each other, it is possible to change the height of the
stereo pair, rotate it 360° around the vertical axis. Each
camera can be rotated at a small angle in the horizontal
and vertical planes. But the main thing is the adjustment
of the distance between the cameras using a special
control line and the installation of this distance with an
accuracy of fractions of mm. This is very important
when changing the base distance.

A single pi-camera (in our case, the previously
described Sony IMX219 Exmor camera) is used for a
monocular vision system. It is mounted on a separate
tripod (Fig. 1, ¢) and connected to the Raspberry Pi
through a special CSI video input. This significantly

reduces the load on the CPU compared to connecting
cameras via USB (Fig. 1, a). This 8-megapixel sensor
allows you to capture, record, broadcast video and
support the following video formats: 1080p (30FPS),
720p (60FPS), 640 x 480p (90FPS).

The appearance of a HAT stereo camera based on
two Sony IMX219 video sensors is shown in FIG. 1, b.
In Fig. 1, d another example is shown - using a web-
camera with a USB connection for video surveillance
purposes. This camera is mounted on a special platform,
the rotation of which with the help of a servo drive can
be carried out through the connector of the hardware 1/0
ports of the GPIO of the Raspberry Pi computer.

Main programming resources. When analyzing
various methods of inputting video data, we will focus
on the use of the Python programming language and
available internal and external resources. The main
feature of writing program codes in Python is the
formation of the necessary features of the project by
importing its own packages (for example, numpy,
pip,pi-camera) and libraries (**'*°", Matplotlib etc.).
It also significantly increases the software resources of
the processing system and the connection of external
libraries. In our case, this is the OpenCV library [8 —
11], the imported resources of which are relatively small
for solving the assigned tasks:

import the necessary packages

from imutils.video import VideoStream
from imutils.video import FPS

import numpy as np

import argparse

import imutils

import datetime

import time

import cv2

Connecting these (and in some cases other
packages and modules) does not put a significant load
on the processor and creates good prerequisites for
processing data in real time.

Pay attention to the use of relatively rarely used
resources (imutils package and argparse module).

Imutils is a set of convenient functions for
simplifying basic image processing operations, such as
shifting, rotating, resizing, displaying images in
Matplotlib, using OpenCV and Python. The aka
imutils is also used when creating a multi-threaded
Python class. It provides access to the computer’s built-
in webcam (external camera with USB connection or pi-
camera) using the OpenCV video capture functions.
This allows you to significantly increase the FPS by
creating a new stream, which only polls the camera for
reading new frames, and the main stream processes the
current frame. Next, we consider this technology in
more detail. Argparse is a Python module for handling
options and command line arguments with which the
script is called. In our task, it is rational to use the
argparse module to convert video files to regular images
and save them using the OpenCV library.

Methods of input and preprocessing of video
data. Next, we consider the main options for building a
video input system and their preliminary processing.

1. The classical method of inputting and
processing video data from a web camera in monocular

87

Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

vision systems is carried out using the OpenCV function
for video capture cv2.VideoCapture (0). Hereisa
snippet of Python code for the practical implementation
of this method:

cv2.VideoCapture (0)
while True:

(grabbed, frame) = stream.read()
cv2.imshow ("Frame", frame)
However, the vVideoCapture video capture

function and the read () data reading method block the
main stream of program code for processing video data
until the frame is read from the camera device and
returned to the main program. Unfortunately, this
method, which is distinguished by simplicity, is often
the main obstacle — it limits the ability to process the
video stream in real time.

2. The Raspberry Pi hardware input method is
implemented using the function of pi-camera. However,
this results in a limitation of the FSP due to the action of
the software load. This method does not allow the use of
two or more cameras. Note also that a time delay is
required to process the display of frames. The program
code for this method is:

camera = PiCamera ()

camera.framerate = 32.

Stream = camera.capture continuous (
rawCapture, format = "bgr",use video port =
True)

time.sleep(2.0)

for (i,f) in enumerate (stream) :

frame = f.array

cv2.imshow ("Frame", frame)

Note that the VideoCapture and PiCamera ()
functions block the main stream of program code for
processing video data until the frame is read from the
camera device and returned to the main program.
Unfortunately, this method, which is distinguished by
simplicity, is often the main obstacle — it limits the ability
to process the video stream in real time.

3. The method of multithreaded input of video
data involves the creation of the VideoStream () class
to transfer the reading of the frames of a web camera or
usb device to another stream, completely separate from
the main Python script. This allows you to continuously
read frames from the I/O stream while the main stream
processes the current frame. Once the main thread has
finished processing the next frame, it just needs to
extract the current frame from the I/O stream. This is
achieved without waiting for blocking I/O operations.
The program code for the VideoStream multi-threaded
input class is shown below:

fvs=VideoStream (usePiCamera=
=args["picamera"] > 0).start()

time.sleep(2.0)
while True:

frame = vs.read()
cv2.imshow ("Frame", frame)
fvs.stop ()

Creating an FPS Class. An important addition to
multi-threaded video capture functionality is the
definition of the FPS class. This class is used to visualize

and evaluate data entry speed. It provides quantitative
evidence that multithreading does increase FPS.

fps = FPS() .start ()
while fvs.more():

fps.update ()
fps.stop ()
printfps ()

The results of calculating the current FPS values
are displayed on the Raspberry Pi monitor screen.

Creating the FR class. Frame Resolution is a very
important parameter of the frame, the FPS of the video
stream directly depends on the choice of it. For
example, the largest possible resolution of a pi camera is
FR = 1280x960. In this case, FPS reaches 30 frames per
second.

To select and control the frame size, a special
Resolution class was created containing the maximum
frame resolution and its proportions that are most
acceptable for a given project. Here is a code snippet for
implementing this procedure:

fvs=VideoStream (usePiCamera (0)] >.start ()

while fvs.more():
resolution. frame (fvs)
framel=resolution.init (1,1
frame2=resolution.init (2,1
cv2.imshow ("Framel", framel
cv2.imshow ("Frame2", frame2

)

)

)

)
fvs.stop ()

Stabilization of the contrast of video data. The
registration of video data usually occurs against a
background of various kinds of interference with a
constant dynamic change in the background of the
observed scene. In this case, one of the dominant
negative factors is the variability of illumination. Note
that these can be both rapidly changing lighting
conditions and slow changes caused by, for example,
twilight. All this leads to poorly controlled variations in
the contrast of the frames, and, consequently, to a
deterioration in the quality of processing. Recall that
usually the change in brightness values for video data is
in the range of numbers 0 +~ 255. This corresponds to the
uint8 data format. To overcome these difficulties
(poorly controlled changes in frame contrast depending
on illumination), the authors proposed to convert the
original video sequence from the RGB color space to
the YUV space using the function

img yuv = cv2.cvtColor
(img, cv2.COLOR_BGR2YUV) .

The range of RGB values is [0 + 255] for each
component, and ranges are used for the YUV color
space

oY —[0+255];
o U—[-112+ 112];
oV > [-157 + 157].

A distinctive feature of the YUV color space [5] is
that it uses an explicit separation of information about
brightness and color. Color is represented in the form of
three components - luminance (Y) and two color
difference (U and V).

88

ISSN 2522-9052

CyuacHi iHpopmariiini cucremu. 2020. T. 4, Ne 2

After translating the RGB frame of the video
sequence into the YUV color space, it performs the
equalization procedure (increasing contrast) of only the
Y component using the function

img yuv([:,:,0] =
cv2.equalizeHist (img yuv[:,:,0]),
and then the frame is inversely converted from YUV
format to RGB format:
img output=cv2.cvtColor
(img yuv,cv2.COLOR_YUV2BGR) .

In this case, the color balance is maintained
unchanged, since the color difference components U
and V were not transformed.

Note that the transition from the RGB color space
to the YUV space allows you to simply estimate the
average level of brightness of the frame by the Y
component. The most objective and stable indicator in
our opinion is the indicator FMB (Frame medium
brightness), which is calculated as

1 N M
FMB =—- Y(i,j
M-N Z‘Z‘ (5-7)
i=0 j=0
where Y(i,j) — two-dimensional array of numbers

defining the brightness of the pixels of the image frame
size M x N . This indicator is all the more useful because
at low levels of frame brightness in video surveillance
systems it is convenient to use the procedure of
comparing it with a pre-set threshold for automatically
turning on / off the scene illumination system.

Thus, the use of the equalization procedure ensures
the alignment of the histogram of the brightness
distribution and leads the average brightness of the
image to a value (FMB = 127), regardless of what this
indicator was for the original image. This makes it
possible to stabilize the level of average brightness of
frames, and therefore, eliminate the factors of instability
of illumination of the scene, which negatively affect the
further quality of video processing.

4. Experiments

To evaluate the effectiveness of the proposed
methods for improving the quality of video data, a
number of experimental studies were carried out using
the DVRs shown in Fig. 1, and the specialized program
"Test programm". It is written in Python using the
appropriate resources of the OpenCV library. This
program is based on the use of input and preprocessing
algorithms described in our work, received using web or
pi-cameras of the original video data into the Raspberry
Pi microcomputer. A generalized UML diagram of the
operation of this program is shown in Fig. 2.

Given the complex nature of the research, the
program included the possibility of organizing various
versions of the video capture and video input algorithm
(classic with the cv2.videoCapture (0) function,
accelerated by the hardware of the Raspberry Pi computer,
as well as the fastest multithreaded input using a specially
created class VideoStream). In addition, the program can
pre-set the required screen resolution, as well as in
conditions of insufficient scene illumination - the mode of
stabilizing the brightness of the frame.

frame=fvs.read()

Initiation camera

Initiation variable
FPS,FVS

L

{ Delay setting] frame=transformation_frame(frame))
|
Else Time<al cv2.imshow(frame)
|
cv2 waitkey(1)
v
fps.update()
stop fps,fvs]
v
display fps]

l

@

Fig. 2. UML diagram of program activities

The «Test program» also provides a number of
service options. First of all, it is the ability to display the
input video stream on the screen using the cv2.imshow
(frame) function.

The transformation frame (frame) function
allows you to change the format of frames and their
sizes, and, if necessary, set the mode for stabilizing the
brightness of the frame. In addition, it is envisaged to
apply special inscriptions in the frame field with
information about the current FPS value of the video
stream, frame sizes and stabilization of the brightness of
the scene image.

Note that to establish the operating mode of the
VideoStream class (capture the required number of
frames of the input video stream), a time interval of 1 s
was selected, and to obtain stable and reliable FPS
estimates, the averaging interval was 10 s.

5. Results

When planning the experiment, the task was to
identify and study the relationship between the nature of
changes in the FPS performance indicator and the
resolution of the FR frames of the video stream entered
into the Raspberry Pi microcomputer for various data
input and preprocessing algorithms.

In addition, the task was to study the degree of
influence on the speed of the procedure for entering
additional load on the computer processor due to the
algorithm for stabilizing the brightness of the video
stream frames. Based on these data, it was necessary to
formulate recommendations on the optimal

89

Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

configuration of software for input and preliminary
processing of received video data.

No less important is the task of convenient and
clear visualization of the obtained experimental data.

In Fig. 3 two options for the formation of frames
of a video stream with different resolutions and different
aspect ratios of the frame are shown. In the first case, at
a resolution of 1280 x 960 (Fig. 3, a), the frame almost
completely covers the area of the working window. The
inscription on the bottom left of the frame displays the
current FPS value. When viewing a video stream, the
FPS value changes in real time. The inscription in the
upper left corner shows which video input method is
used in this case (Slow method and Fast method
appropriately).

e
T Thonny - /home/pi.. |=—JFrame

S OEEO | o

Variables

b

Fig. 3. Video stream frames formed with different resolutions:
a— 1280 x 960; b —320 x 240

In Fig. 3, b, a frame of a video stream with a
resolution of 320 x 240 is displayed on a computer
screen. Such permission is usually used in robotics. Due
to the small area of this frame, you can easily see the
screen fragment of the program code, and in the lower
left corner of the command window the current
calculated FPS values. Here is a fragment of such data:

[INFO] elasped time: 10.67
[INFO] approx. FPS: 8.53
[INFO] Width 1280

[INFO] Heigh 960

When comparing the FPS in the examples shown
in Fig. 3 shows that the transition from low resolution to
large leads to a significant decrease in input speed —
FPS decreases from 23 frame/second to 8. Potentially
possible (passport FPS) is 30 frame / second).

Fig. 4 shows two 640x480 video frames inserted
into a Raspberry Pi computer using the multi-stream
VideoStream method. Due to insufficient lighting of
the scene (Fig. 4a), the procedure for contrasting
(equalizing) frames was introduced into the preliminary
processing of the video stream (Fig. 4b). It was
previously mentioned that this requires translating the
RGB frame of the video sequence into the YUV color
space, followed by the equalization of the luminance
component Y and returning it to the RGB color space. It
is clear that this creates an additional load on the
processor and negatively affects the input speed — FPS
decreases from 24 to 19 frame/second. However, the
image quality of the frame is increasing.

b

Fig. 4. Stabilization of the brightness
of the frames of the video stream

Fig. 5 shows the dependences of the rate of input
of FPS video data using a web-camera depending on the
selected resolution of the frame. Here we present
possible standard options for the names of the formats
and the resolution of the frames, which are
recommended to be established when creating and

90

ISSN 2522-9052

CyuacHi iHpopmariiini cucremu. 2020. T. 4, Ne 2

organizing the input of the video stream, and also
determine the aspect ratio of the frame on the screen:

QVGA —Frame Resolution = 320x240 — (4:3);
HVGA —Frame Resolution = 640x240 — (8:3);
HVGA 1 - Frame Resolution =320x480 — (2:3);

nHD — Frame Resolution = 640x360 — (16 :93);
VGA — Frame Resolution = 640x480 — (4:3);
SVGA —Frame Resolution = 800x600 — (4:3);
qHD — Frame Resolution = 960x540 — (16:9);
XGA — Frame Resolution = 1024x768 — (4 :3);

WXVGA — Frame Resolution = 1200x600 — (2:1);
HD 720p — Frame Resolution = 1280x720 — (16:9);
Full HD — Frame Resolution = 1920x1080 — (16 : 9).

The analysis was carried out for formats with a
relatively low resolution (from QVGA — 320 x 240 to
Full HD - 1920 x 1080). A comparative analysis of the
effectiveness of the two input methods (classical and

multithreaded) showed the undoubted advantage of the
latter.

This is especially true with high resolution frames.
So, for example, at HD 720p resolution, the FPS of the
fast method is 17.60, which is about twice as high as the
slow method (FPS = 9.76). Such data are undoubtedly
useful for practical use.

As in the previous study, we studied data on the
characteristics of the input rate of a video stream using
various methods (slow and fast). But at the same time,
for video surveillance, a specialized pi-camera was used
in conjunction with the Raspberry Pi microcomputer.
The dependences of FPS values on the resolution of
video frames are shown in Fig. 6. Obviously, the use of
the method of multithreaded input (Fast method) in this
case significantly exceeds the capabilities of the slow
method (Slow method).

FPS

30+ AeEsan nsseisine e S e

. H . . Colorspace RGB

: : : : ' Fast method:
P I, F— b HSUUUU SUUUUUON S WG S o0 SUUUUNN SUPUOIE

Web-camera FC 250 .

Passportdata

P I Resolution: 1280x960p: .\ i N\l . .. —onlmemon

: FPS max up to 30

for Resolution = 1280x960p
T 1 I S [S 0 S S A~ G S
5§ T v TR v F ¥ [A T A
0 : . iy 5 : - . : d I8 5= FR

QVGA/HVGAAVGAJ/ nHD/ VGA/ SVGA/ qHD/ XGA/ VXVGA/-:D7ZOQ/FUIIHD/

Fig. 5. Indicators of video input speed for various resolutions of video stream frames

FPS

! : H H H , . Color space RGB

90 f------+ T W [paia (R R [PRESE ey SEEEy R e S e
Pl-damera Oh1n| \Ilsndn OV5647

: :) : : Passport data: : : :
7, INNSRSMEE . %, "SR SCT. S— -----Mak resolution: 2592x1944 p; . .- ... R EEEEEE .-

: : : : FP$ max up to 30 : : : :

for résolution = 1080p :
g0 s waivans — R | F— L wrasag F P_S.."J?.’S.PR!S’.!SP [R— —— o

i ; : ! for resolution = 720p; : :

FPS max up to 60/90
for resolutlon 640x480

[e R R R e e CEE TPy B
I IESTPEE . TSI NES VIR T SR SRR NUSSRIE ESEAS ROPSREN, WS SRR,
7 R e e ey it mom e G L e Lt R, e St o

. Fast method :

o ; ; ' FR
QVGA / HVGA/-:VGAJ/ nHD/ VGA/ SVGA/ qHD/ XGA/ VXVGAADTJOQ/ Full HD/

Fig. 6. Indicators of video input speed for pi-cameras

91

Advanced Information Systems. 2020. Vol. 4, No. 2

ISSN 2522-9052

This is especially noticeable at low resolution
values of the frame. For example, with QVGA
resolution (320 x 240), the data input speed increases by
3.5 times and approaches the potential capabilities of
the pi-camera in terms of speed. Based on these data, we
can conclude that in practically important applications it
is advisable to use pi-cameras and the Fast method for
this task, based on the use of the multi-stream class
VideoStream.

The given examples, of course, do not cover all the
features of the problem under consideration. You can
explore the effect on input speed and frame quality and
other factors. However, due to limited publication
volumes, we recommend that you do this yourself.

Conclusions

A new integrated approach to the problem of
improving the quality of video processing in modern
mobile VS based on Raspberry Pi microcomputers is
proposed. Jointly optimized indicators of the speed of
capture and processing of video data, the resolution of

the video frame and the stability indicators of the
brightness of the frame regardless of the lighting
conditions of the scene. The effectiveness of the
proposed video processing algorithms and methods for
synthesizing program codes was studied experimentally.

The scientific novelty. The analysis showed a
significant improvement in the quality of the recorded
video stream using the proposed algorithms. For the
first time, new methods for processing video data were
obtained on the basis of objective optimization criteria
using modern programming tools.

The practical significance. In the future, the
results can be used to create various projects based on
mobile VS. Based on the results of the research, it is
easy to create the necessary high-quality software.

Prospects for further research. The authors
consider it most appropriate to complete work in this
area to conduct detailed studies of the characteristics of
input and preliminary processing of video data from two
cameras to form a modern mobile stereo vision system
on the basis of the Raspberry Pi computer.

REFERENCES

1. (2020), The official documentation site for working with a Raspberry Pi computer, available to: https://www.raspberrypi.org;
2. (2020), The official site of the Python language, available to: http://python.org/;
3. (2020), The official website of the developers of the OpenCV library, available to: http://opencv.org;
4. (2019), Synchronized Dual Camera for Raspberry Pi 4., Published by Lee Jackson on September 16, 2019, available to:

https://www.arducam.com/dual-camera-hat-synchronize-stereo-pi-raspberry/;
5. Fedorov, D.Ju. (2016), Fundamentals of programming using the Python language as an example, Simvol-Pljus, SPb., 176 p.
6. Lutc M. (2011), Python Programming, Simvol-Pljus, SPb., 992 p.

7. Protasov, S.I., Kurgalin, S.D. and Kryloveckij A.A. (2011), “Using webcams as a source of stereo pair flow”, Vestnik VGU,
Serija: sistemnyj analiz i informacionnye tehnologii, Voronezh, No. 2

*

Linda G., Shapiro and George C., Stockman (2001), Computer Vision, Prentice Hall, 580 p.

9. Joseph, Howse and Joe Minichino (2015), Learning OpenCV 3 Computer Vision with Python, Second Edition, Packt

Publishing, ISBN: 978-1-78528-977-4.

10. Saurabh, Kapur (2017), Computer Vision with Python 3, Packt Publishing, ISBN: 978-1-78829-976-3.
11. Prateek, Joshi (2015), OpenCV with Python By Example, Packt Publishing, ISBN: 978-1-78528-393-2.

12. Dergachov, K., Krasnov, L., Cheliadin, O. and Zymovin, A. (2018), “Adaptive algorithms of face detection and effectiveness
assessment of their use”, Advanced Information Systems, Vol. 2, No. 3, DOI: https://doi.org/10.20998/2522-9052.2018.3.02.

13. Dergachov, K., Krasnov, L., Cheliadin, O. and Plakhotnyi, O. (2019), “Web-cameras stereo pairs color correction method
and its practical implementation”, Advanced Information Systems, Vol. 3, No. 1, pp. 29-42, DOLI:
https://doi.org/10.20998/2522-9052.2019.1.06

Received (Hapnifinuna) 24.03.2020
Accepted for publication (ITpuitasita no apyky) 20.05.2020

B1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

JeprayoB Koctsintun FOpiiioBHy — KaHAUIAT TeXHIYHUX HayK, JOLEHT, 3aBiTyBay KadeIpy CHCTEM YIpPaBIiHHS JITaTbHUMU
anaparamu, HauioHansHuit aepokocMiunuii yHiBepeutet iMeHi M.€. XKykoBcbkoro «XAl», Xapkis, Ykpaina;
Kostiantyn Dergachov — Candidate of Technical Science, Associate Professor, Head of Aircraft Control Systems
Department, National Aviation University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: kosv.v@ukr.ua; ORCID ID: http:/orcid.org/0000-0002-6939-3100.

Kpacnos Jleonin OJiekcaHIPOBUY — KaHAWIAT TEXHIYHUX HAYK, CTApLIMIl HAYKOBHI CIiBPOOITHHK, NOLEHT KadeIpu cucTeM
yIIpaBIIiHH JIiTalbHUMU anaparaMy, HarionansHuii aepoxocMiunmii yHiBepeuret iMmeni M.€. JKykoBcbkoro «XAl», Xapkis;
Leonid Krasnov — Candidate of Technical Science, Senior Research, Associate Professor of Aircraft Control Systems
Department, National Aviation University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: leonid.krasnov.1947@gmail.com; ORCID ID: http://orcid.org/0000-0003-2607-8423.

Yeaspin Ourexkcanap OJiekcaHAPOBHY — acHipaHT kKadeIpu CHUCTEM YNpPaBIiHHA JITAJIBHUMM anaparamy, HanionansHuii
aepokocMiuHuit yHiBepcuteT iMeHi M.€. JXKykoBcpkoro «XAl», XapkiB, Ykpaina;
Oleksandr Cheliadin — Doctoral Student of Aircraft Control Systems Department, National Aviation University “Kharkiv
Aviation Institute”, Kharkiv, Ukraine;
e-mail: Jorianua33@gmail.com; ORCID ID: http://orcid.org/0000-0002-1201-6240.

Kazarunceknii Poman €BreHoBu4 — maricrpant kadeIpy CHCTEM YNPABIiHHA JIITAIBHUMM anaparamu, HanionanbHuii
aepokocMiynHui yHiBepcurer iMeHi M.€. JKykoBcbkoro «XAly», Xapkis, YkpaiHa;

92

ISSN 2522-9052 CyuacHi iHdopmaniiini cucremu. 2020. T. 4, Ne 2

Roman Kazatinskij — Postgraduate Student of Aircraft Control Systems Department, National Aviation University “Kharkiv
Aviation Institute”, Kharkiv, Ukraine;
e-mail: kazatinskij.roman@gmail.com; ORCID ID: http://orcid.org/0000-0002-7098-715X.

Po3podka HOBUX MeTOIB i 32c00iB NMiBUILIEHHS AKOCTI BileoxaHux
B MOOIIBHHX CHCTeMaxX TEeXHIYHOI0 30py

K. 1O. [leprauos, JI. O. Kpacuos, O. O. Yensnin, P. €. KazarnHcekuii

AnoTtanis. [Ipexmer BUBYeHHsI. Y CTaTTi 3alIPOIIOHOBAHO HOBI METOAM BBEJICHHS 1 MONEpeaHb0I 0OpPOOKH BileOfaHNX
JuIs web- 1 crenianizoBaHuX pi-Kamep B CHCT€MaxX MOHOKYISIPHOTO i cTepeo3opy Ha 0a3i Mikpokomm'torepiB Raspberry Pi s
IIBUILEHHS SIKOCTI POOOTH Cy4aCHMX MOOUIBHMX CHCTEM TEXHIYHOro 30py. Takui MiJXix 3aBXAM aKTyaJdbHHH, OCKUJIBKU
MIPOEKTYBAHHS CY4acHHX CHCTEM TEXHIYHOIO 30py ITOCTiHHO BHUMara€ HOBHX HETPUBIAJBHUX alapaTHUX, aJTOPUTMIYHUX 1
MpOrpamMHUX pimieHs. MeTH. MeToro € MOpiBHIBHUN aHajli3 MMOKa3HWKIB SIKOCTI BiJOMHX METOMIB BBEICHHS 1 MONEPEeIHBOI
00pOOKH BiZI€OZAaHMX B CHCTEMax TEXHIYHOTO 30py Ta po3poOKa HOBHX METOAIB 1 poOOYMX alrOpUTMIB, IIO 3a0e3NeyyroTh
OUIBINY IIBHAKOMIIO INPW YHTAHHI BiJICOJAHUX, HEOOXITHUH JJO3BUI KaJpiB 1 HE3AISKHICTH SICKPaBOCTI KaJpy BiA 3MiH
ocsiTieHocti cuenn. Meroau. B poGori chopMynboBaHO KOMIUIGKCHMII KpHUTEpid MiIBHUILEHHS SKOCTI BBEICHHA B
MikpokoMm'torep Raspberry Pi i monepenusoi o6poOku Bineomanux. Ha migcraBi NpHHHSATHX IMOKa3HUKIB SIKOCTI (IIBHIKOCTI
BBEZICHHS BiJICOJJAHMX, PO3UILHOI 34aTHOCTI Ta IMOKa3HUKIB CTAOLIFHOCTI CepeIHbOI SICKPaBOCTi IIOTOYHUX KaJpiB MPUITHATOrO
BiJICOITOTOKY) CHHTE30BaHI QJITOPUTMH BBEJICHHS 1 MOMEpeaHbol 00poOKH Bi€OIaHMX, IO 33JOBOJIBHSIOTH 3aJaHIM BHMOTaM.
Lle mo3Bonsie U KOXKHOTO NMPOEKTY 3HAWTH ONTHUMAaJIbHUH MeTOx OOpOoOKH BiZ€OJaHUX i IOJOJIATH MPOTUPIUYS 3MEHIICHHS
IIBHKOCTI BBEICHHS uYepe3 HeoOXIJHICTh 30UTBIICHHST PO3IUIBHOI 37aTHOCTI BineokaznpiB. CTBOpeHa yHiBepcaibHa Iporpama
BBEJICHHS 1 NonepeHp0I 00pOOKH LUX JaHUX JI03BOJIMIIA OTPUMATH KiJIbKICHI OLIHKH €()eKTHBHOCTI pO3pO0IEHNX aJlrOPUTMIB 1
copMyITIoBaTH peKOMEHJAMii II0J0 iX IOJAJbLIIOr0 BHKOPHCTaHHA. Bce Iie m03BONSE ICTOTHO MiABHIIMTH €(EKTHBHICTH
BUKOPHUCTaHHs Mikpokomi'torepiB Raspberry Pi B cygacHux MOOUIBHHX cHCTeMax TeXHIUHOro 3opy. Pesyasrarn. Orpumani
Ppe3yabTaTH MOKJIAIEHI B OCHOBY IIPH CTBOPEHHI YHIBEPCAIBHOTO MPOrPaMHOr0 MPOAYKTY ISl IIBU/IKICHOT'O BBEJCHHS (B pexuMi
peanbHOrO Yacy) i momepeaHsoi oOpoOKHM BiZE€OJaHMX B CHCTEMax JAETEKTYBaHHS 1 pO3Mi3HaBaHHS OCi0, a TaKOX CHUCTEM
crepeo3opy. BucuHoBku. [IpoBemeHi eKcriepUMEHTaNIbHI JOCHIDKEHHS IMIATBEPIWIN Ipale3JaTHICTh 1 e(eKTHBHICTH
3aIPOIIOHOBAHUX METOJIIB 1 QJITOPUTMIB IIBUIKICHOTO BBEJICHHS BiICOJJAHNX 3 PI3HUMU 3HAYEHHSIMH PO3ALIBHOI 31aTHOCTI KaJpy
1 MOXJIMBICTIO aJlaITUBHOI PEryNIOBaHHA #oro sckpaBocti. Ha 6a3i cTBOpeHHX METOIB i alropuTMIiB 3alpOIIOHOBaHI Pi3Hi
BapiaHTH IX mporpamHoi peamizamii. Lle mo3Bonsie peKOMEHIyBaTH OTpPHUMaHI Pe3yNbTaTH IS NMPAKTHYHOIO BHKOPHCTAHHS.
[epcriekTHBY MONANBIINX JIOCIIDKEHb Nepe0aJaroTh PO3IINPEHHS! BEKTOPAa KPUTEPIiB OLIHKH SKOCTI Ta O3HAK JUISl ONTUMI3alli
BiJICO/IaHUX, @ TAKO)K CTBOPEHHSI HOBUX aJIFOPUTMIB 1 Pi3HUX BapiaHTiB IPOrpaM Ha X OCHOBI.

Karw4dosi caoa: mikpokomm'torep Raspberry Pi; anropurmu i mporpamHi Koau BBEASHHS i MONEPeaHbOI 00pOOKH
Bineonanux; ¢pynkuii 6i6miorexn OpenCV.

PaspaﬁoTKa HOBBIX METOAOB U CPECACTB MOBBILICHUA KaYeCTBA BUACOTJAHHBIX
B MOOMJIbHBIX CHCTEMAX TEXHHYECKOT0 3peHust

K. 1O. [lepraués, JI. A. KpacHos, A. A. Yensnun, P. E. Kasatunckuit

AnHoTanus. Ilpeqmer m3yuenmsi. B craTbe npemnoxkeHsl HOBbIE METOABI BBOJA U IIPEABAPUTEIBHOH 00pabOTKH
BUJICOJAHHBIX JUII Web- M CIELMaNU3UPOBAHHBIX pi-KaMep B CHUCTEMaX MOHOKYISPHOIO M CTepeo3peHHs Ha 0Oase
MHKpPOKOMIIbI0TepOoB Raspberry Pi 11t noBblmeHus kadecTa paboTsl COBPEMEHHbBIX MOOMIIBHBIX CHCTEM TEXHHYECKOTO 3pCHHSI.
Takoll moaxo/ Bceraa akTyalleH, IIOCKOIbKY IIPOSKTUPOBAHIE COBPEMEHHBIX CHCTEM TE€XHHUYECKOrO 3PEHUsI IOCTOSHHO TpeOyeT
HOBBIX HETPHUBHUAIBHBIX AMAPATHBIX, AITOPUTMUYECKHX U NporpaMMHbIX pemeHnid. Heas. Llenbro sBnseTcs conocTaBUTENbHbIH
aHalu3 II0Ka3aTelell KauecTBa W3BECTHBIX METOAOB BBOZJA M IIPEABApHUTENbHON 00pabOTKM BHICOJAHHBIX B CHCTEMax
TEXHUYECKOr0 3peHHUsI U pa3paboTKa HOBBIX METOIOB M pabOUMX aJIrOPUTMOB, o0ecreunBaromux Ooblee ObICTPOACHCTBIE TIPU
YTEHUM BHUICOJAHHBIX, HEOOXOIMMOE pa3pelleHHe KaJpOB M HE3aBHCHUMOCTb SPKOCTH KaJpa OT M3MEHEHHH OCBEILEHHOCTH
cuensl. Mertoabl. B pabore chopmynupoBaH KOMIUIGKCHBIH KPHTEpPHI IIOBBIIICHHMS KayecTBa BBOAA B MHKPOKOMIIBIOTED
Raspberry Pi u npensaputensHoit 00paboTku BuieoiaHHbIX. Ha ocHOBaHMM NPUHATHIX MOKa3aTesel kadyecTBa (CKOPOCTH BBOzA
BUJICOJJAHHBIX, PAa3pEIIAIOIIeH CIIOCOOHOCTH U IOKa3aTeseil cTabMWIbHOCTH cpefHel SAPKOCTU TEKyIIMX KaJpoB HMPHHHUMAEMOro
BUJICONOTOKA) CUHTE3UPOBAHbI AJITOPUTMBI BBOJIA U IIPEABapUTEIbHON 00pabOTKM BHICONAHHBIX, YIOBIECTBOPSIOIINE 331aHHBIM
TpeOOBaHUAM. DTO MO3BOJSIET VIS KaXKIOro MPOEKTa HAaHTH ONTUMAIbHBIA MeToI 0O0pabOTKH BUJIICOJAHHBIX U IIPEOZONIETH
MPOTUBOpPEYHE YMEHBIICHUS CKOPOCTH BBOJA H3-32 HEOOXOZMMOCTH YBEJIMYEHHMS pa3peliarolleil ClocOOHOCTH BHIEOKaJpPOB.
Co3naHHasg yHUBepcallbHas IIporpaMMma BBOJA M IIPEABApUTEIbHOH 00pabOTKM STUX JaHHBIX MO3BOJMJIA IIONYYUTh
KOJIMYECTBEHHBIE OLIEHKH 3(PEKTUBHOCTH Pa3pabOTaHHBIX AITOPUTMOB U c(HOPMYIIUPOBATH PEKOMEH/IALMH I10 UX JaJIbHEHIIEMY
HCHOJIb30BaHUIO. Bee 3T0 103BONSET CyIIECTBEHHO MOBBICUTD (G (EKTUBHOCTD UCIIOIB30BAHUA MUKPOKOMIIBIOTEPOB Raspberry
Pi B cOBpeMEHHBIX MOOMJIBHBIX CUCTEMaX T€XHHYECKOro 3peHus. Pe3ynabTaTel. ITonydeHHbIC Pe3yabTaThl MOJIOKEHBI B OCHOBY
IpY CO3JAHMU YHHBEPCAIBHOI'O HPOrPaMMHOIO IMPOAYKTa Il CKOPOCTHOrO BBOAA (B PEXUME PEAIbHOrO BPEMEHH) U
Ipe/IBAPUTEIILHOI 00paOOTKK BUAEOAAHHBIX B CUCTEMaX JIETEKTHPOBAHMS M PACIO3HABAHUSA JIUL], @ TAKXKE CUCTEM CTEPEO3PEHHSL.
BoiBonbl. IIpoBeneHHbIE 3KCIIEPHMEHTANIbHBIE HCCIEAOBAaHUS IOATBEPAMIM paboTOCIIOCOOHOCTE U 3(EKTHBHOCTH
PEUIOKEHHBIX METOJIOB U JITOPUTMOB CKOPOCTHOI'O BBOZIA BU/ICOJAHHBIX C PA3HBIMHU 3HAYEHUSAMH pa3pellarolieil ClocoOHOCTH
KaJipa ¥ BO3MOXHOCTBIO aJAIITUBHON DPErylMpOBKH ero sipkoctd. Ha Ga3e co3naHHBIX METOIOB U AJITOPUTMOB IPEUIOKECHBI
pasuyuHbIe BapUAHTBl MX MPOrPAMMHON pealn3alud. OTO TIO3BOJISIET PEKOMEHIOBATh IOTYYEHHBIE DE3YIbTaThl IS
MPAaKTHYECKOr0 MCIONB30BaHMs. [lepcriekTHBBl NalbHENININX HMCCIENO0BAHMN INPEIIOIaraloT PacIIMpPEeHHe BEKTOpa KPUTEPUEB
OLIEHKH Ka4eCTBa M MMPH3HAKOB [UIsl ONTUMHU3AIMU BUAEONAHHBIX, a TAKKE CO3IaHNE HOBBIX AJITOPHTMOB U PAa3]INYHBIX BADHAHTOB
MPOrpamMM Ha HX OCHOBE.

KawueBbie cioBa: MukpoxommbioTep Raspberry Pi; anroputmsl U nporpaMMHBIE KOIbI BBOJA U IIPEABAPUTEIBHOM
00paboTKK BUIeOIaHHBIX; QyHKIMHK Oubmmorexn OpenCV.

93

