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PARAMETRIC SYNTHESIS OF A NON-STATIONARY AUTOMATIC CONTROL
SYSTEM OF THE COURSE STABILITY OF THE CAR

Abstract. Widely used in the practice of analysis and synthesis of automatic control systems of non-stationary dynamic
systems, the method of “frozen coefficients” does not have a rigorous theoretical justification and does not always lead to the
desired results. In this regard, to solve the problem of parametric synthesis of a non-stationary automatic control system of the
course stability of the car, an algorithmic method is considered for choosing the variable parameters of the regulators of non-
stationary objects, based on the direct calculation of the additive integral quadratic quality functional that reflects the set of
requirements for the automatic regulator of a non-stationary object, followed by finding the values of the variable parameters a
regulator delivering a minimum of quality functional, and the required values of the weight coefficients of the additive functional.
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Introduction

Problem statement. In [1], the problem of
choosing the values of the variable parameters of the
electronic unit of the automatic control system (ACS) of
the course stability of the car was considered, the
structural diagram of which is shown in Fig. 1, where the
following notation: CIC — command instrument
complex; OC — onboard computer; EHA — electro-
hydraulic amplifier; BP — brake pedal; A — automobile.
In the process of braking the car, external disturbances
acting from the side of the motion surface, as well as
skid and slip of the wheels of the car, lead to the
deviation of the car body from a given direction of
travel and possibly to an emergency situation. The
objective of the automatic control system of the course
stability of the car (international designation VSC) is to
minimize the possible deviation of the skid of the car
body when braking in difficult road conditions.

The CIC contains three gyroscopic sensors of
angular velocity AVS and three linear acceleration
sensors LAS, the sensitivity axes of which coincide in
the direction with the three main central axes of inertia
of the car body: OX - longitudinal, OY - transverse
and OZ - vertical. The output signals of the AVS

o, (¢), o, (1), ®,(t) and LAS w,(¢), Wy, (1),
w, (t) are fed to the inputs of the analog-code converter
(ACC) of the OC, where they are converted into lattice
functions o, [nT], ®, [nT], o.[nT], w[nT],
wy, [nT] and w,[nT]. High-frequency interference of

lattice functions at the output of the ACC is filtered by
Butterworth recursive digital filters [2]. From the output
of the filters FB1 — FB6, the filtered lattice functions

@x[nT], (By[nT], (TJZ[nT], ﬁ/x[nT], Wy[nT] and
w,[nT] go to the algorithm block Al, which

implements the algorithms of strapdown inertial systems
SINS [3], which calculates the angular deviation of the

car body y[nT] and the linear displacement of the

center of mass of the body y[nT] from a given vehicle
trajectory in braking process. The output signal of block
Al y[nT] is fed to the input of the Lanczos digital filter
[4], at the output of which there is a lattice function
(o[nT] corresponding to the angular velocity of rotation

of the car body in its perturbed movement during braking.
Block A2 implements the stabilization algorithm of
the car body in the channel of angular stabilization

Uy, [nT]=kW\u[nT]+k\l-,(o[nT] , €))]

and block A3 implements the stabilization algorithm in
the channel of lateral displacement

u, [nT]=kyy[nT], 2

as well as the stabilization algorithm of the two-channel
system

u[nT]=kw\u[nT]+k\l-,0)[nT]+kyy[nT]. 3)

The control signal in the form of a lattice function

(3) is fed to the input of a code-analog converter (CAC),

from the output of which a continuous signal u(z) is fed

to the input of the control winding of the EHA, which

forms the brake fluid pressure p, (1) and p;(¢) which

is supplied to the brake cylinders of the wheels of the
right and left sides of the car.

In relations (1)—~(3), through%,, , & and k, are

designated the variable constants of the control

algorithm. The task of the parametric synthesis of the
ACS of the course stability of the car is to find the

values of the variable constants k\u R k\i/ and ky of the

algorithms (1)—(3) that deliver the required properties to
a closed ACS. So, in [1], these constants are selected
from the condition of maximum margin of stability and
maximum speed of closed ACS.
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Fig. 1. Block diagram of the automatic control system of the course stability of the car

The control object under consideration — a car with
an electro-hydraulic brake amplifier is non-stationary.
Indeed, the mathematical model of the perturbed motion
of the control object developed in [1] has the following
form:

L w0
0w )
L, diz(;) (1) =u (1) ©)

d*y(t) . dy(1) .
I 2 + fy o +opy (1) =ki(t) 5 7

Ap(t)=kyy(t), ®)

where (¢) is the current angle of deviation of the

longitudinal axis of the car body from a given direction of
y(t) is the
displacement of the center of mass of the body relative to

movement during braking; lateral
a given trajectory of the car during braking; i(¢) is the
current value of electric current in the control winding
of the EHA; y(7) is the angular deviation of the rocker
arm of the EHA electromagnet; Ap(¢) is the differential
pressure of the working fluid in the brake lines of the
right and left sides of the car; u(¢) is the control signal
at the output of the CAC converter of the OC; M ; (¢)
is the disturbing moment acting on the car body relative
to its own vertical axis of inertia; v() is the current
speed of the center of mass of the car during braking; /,

is the moment of inertia of the car body relative to its
own vertical axis; L, is the inductance of the control
winding of the EHA; r is the resistance of the control
winding; [ is the moment of inertia of the rocker arm of
the EHA; f; is the coefficient of viscous friction in the
axis of rotation of the rocker arm; c¢; is the stiffness
coefficient of the fixing spring of the EHA rocker arm;
kg, ke, k, are the proportionality coefficients.

Equations (4)—(8) describe the perturbed motion of
the continuous part of closed digital ACS of the course
stability of the car. Equation (4) describes the change in
the mismatch angle y(¢) of the own longitudinal axis of
the car body from a given direction of movement;
equation (5) is the deviation of the center of mass of the
body y(f) from a given trajectory; equation (6) is the
change in the electric current in the control winding of the
EHA i(¢), to which a control signal u(f) is supplied from
the output of the CAC; equation (7) is the change in the
angle of rotation of the rocker arm of the EHA
electromagnet y(¢) under the action of electric current i(?),
and equation (8) is the mismatch of the working fluid
pressures in the brake lines of the right and left sides of the
car when the rocker arm is rotated through an angle y(¢).

The system of differential equations (4)—(8) is non-
stationary, since in equation (5) the coefficient at y(¢) is
the current velocity of the center of mass of the car v (f),
which changes in time during braking. In [1], to solve the
problem of parametric synthesis of ACS of the course
stability of the car, the “frozen coefficients” method is
used, according to which the trajectory of a non-
stationary object is divided into a number of intervals, on
each of which the time-variable coefficients of the
mathematical model of the non-stationary object are
“frozen”, that is, are assumed to be constant over time. At
each of the intervals, the problem of choosing the variable
parameters of the ACS for a stationary object is solved,
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and then the change in each of the variable parameters in
time is extrapolated by the corresponding function of
time, which is realized by an analog or digital ACS.
Despite the simplicity of the method of "frozen
coefficients", this method is not theoretically justified and
often leads to unsatisfactory results.

In [5, 6], an algorithmic method for the parametric
synthesis of dynamical systems is described, based on the
direct calculation of the additive integral quadratic
functional, which reflects the set of requirements for ACS,
on the solutions of the mathematical model of a closed
ACS and on the simulation model of external perturbations
acting on the control object with subsequent finding the
minimum mathematical expectation of the functional in the
space of variable parameters using the Optimization
Toolbox software package MATLAB or Minimize
software MATHCAD. Moreover, the solution to the
problems of analysis and synthesis of ACS of non-
stationary technical objects can be obtained without the use
of the “frozen coefficients” method and, as a rule, leads to
higher quality of controlled processes in a closed ACS.

The purpose of this article is to solve the problem of
parametric synthesis of the ACS of the course stability of
the car using the algorithmic method of parametric
synthesis of dynamic systems, followed by a comparative
analysis of the obtained results with the results of use of the
"frozen coefficients" method for solving the same problem.

Main material

The first step of the algorithmic method of
parametric synthesis of dynamical systems, described in
[5,6], is the formulation of requirements to system and
their formalization. With regard to a closed ACS of the
course stability of the car these requirements are reduced
to the fact that, firstly, the closed ACS should be stable
and, secondly, have high dynamic accuracy. In the theory
of analytical construction of optimal regulators
(ACOR), developed back in the mid-60s of the previous
century, it was concluded that the formalization of the
requirements of stability and high dynamic accuracy of
the system reduces to the requirement of a minimum of
the additive integral quadratic functional calculated on
the solutions of dynamic system. In the work [7] of the
authors of this article, it was shown that this functional
can contain only the so-called “main” coordinates of the
dynamic system, which mainly characterize the
dynamic process under consideration.

From the consideration of the mathematical model
of the perturbed movement of the control object (4)—(8) it
follows that the “main” coordinates, which mainly
characterize the movement of a car with an electro-
hydraulic brake amplifier, are the angle y(¢) of deviation
of the longitudinal axis of the body from a given direction
of movement, the angular velocity y(¢) of rotation of the
body and the current deviation of the center of mass of
the body y(f) from a given trajectory of the car. Then the
additive integral quadratic functional, the value of which
characterizes the accuracy of the closed ACS of the
course stability of the car, is written as

(B33 (1) B393 () B33 (0 Jar] . )

I=M{
0

()

where j = LN is the implementation of random process

M ; (1); {V[) — symbol of mathematical expectation of
: J

random process implementations M ; (t); T — random
process analysis time  ;(¢), V;(¢) and y;(¢); By,
B, and B3 — weighting coefficients of functional (9) to

be selected.

The problem of the parametric synthesis of the
ACS of the course stability of the car is to find the
values of the variable parameters of the ACS k,,, &
and ky, which deliver on solutions of the closed ACS
(3)—(8) a minimum of the integral quadratic functional
(9). It is assumed that the digital ACS uses a zero-order

CAC, which converts the lattice function u[nT] into a

piecewise constant function u () [8]:

{u[nT] nT£t<(n+1)T;
t —

= u[(n+1)T}, (n+1)T <t <(n+2)T. (10)

We represent functional (9) in the following form

z(kw,k\.u,ky)=sf%{j;w5 ()t} +

(11)
83 ]33 ()03 ]33 )
and introduce the following notation:
byt v 0],
1 (ky ke Ky ) = %{ij% (t)dt}; (12)

I (kW’k\if’ky) ={\;1){j;yf (’)dt}~

In contrast to the additive functional (11), relations
(12) are called partial functionals. In view of relations
(12), the additive functional (11) is written

I(ky g ky ) = BEEy (R Ky Ky )+
B3 (ke ey ) B3 (ke i )

In [9], a methodology was presented for choosing
the values of the weight coefficients of the additive
functional, in accordance with which, for the problem
under consideration, these values are

(13)

Bl — WV max .
* 2 * .2 * 2 *\°
[1 (\Vmax/ll +\Vmax/[2 +ymax/[3)
\i/max
Br=— ;o (14)
2 * .2 * 2 *
[2 (\Vmax/ll +\Vmax/[2 +ymax/[3)
)
B3 max

= * 2 * .2 * 2 *\
[3 (\Vmax/ll +\Vmax/[2+ymax/[3)

where Wiavs Wmax> Vmax are the maximum possible
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values of the "main" coordinates (), V() and

yj(t), achieved by realizing a random process

M7 (f), j=1N:

f
= max Y;(1);Wmax = _Max W (2);
nax J=LN;t[0,1] 1() nax J=LN;t0,1] 1() (15)
b = _max yil(f);
nax J=LN;t[0,1] '1( )

I*, I*, I, — minimum values of partial functionals
1. 12, 13 p
(12) obtained by minimizing each of them individually
& &
I, = min [, (K); I, = min I,(K);
! KGGk ! ( ) 2 KGGk 2 ( )
;= min 5(K) 1o
= min ,
3 KeGy 3

roe K — vector of variable parameters of the ACS

(17)

G, —the set of permissible values of variable parameters.

Kz[kw ky kyJT;

Finding the minimum of each of the partial
functionals (12) under constraint

is a solution to the nonlinear programming problem.

The Nelder-Mead method [10], implemented in the
Optimization Toolbox software package MATLAB and
Minimize software MATHCAD, allows you to find the
local minimum of each functional (12) closest to the

starting point K 0 Gy . In [11], it was shown that the

integral quadratic functional calculated on the solutions
of a linear system of differential equations has a single
minimum on the set of possible values of the variable
parameters Gy, for which it is recommended to choose

the stability region of the closed ACS in the space of
variable parameters.

After evaluating the maximum values of the
“main” coordinates (15) and calculating the minimum
values of the partial functionals (16), the values of the
weighting coefficients of the additive functional (9) are
calculated, the functional (9) is formed, its mathematical
expectation is calculated for N realizations of the
random process M}J( (1), j=LN, and then using
Optimization Toolbox software package MATLAB or
Minimize software MATHCAD it is searches for a

vector of variable parameters K € G that delivers a
minimum of functional (9).

0 0 0 0
0 00 0 keky/l,
() 00 0 0
A=y o0 _h 0
Ly
0 00 0 0
L0 00 K/l -/l

Consider the method of constructing the set Gy,

for which we present the system of differential
equations (4)—(8) in normal form, introducing the six-
dimensional state vector of the control object

()]

x ()] ()
x(0)]_|»(@)
X(t)= = (19)
70|
xs (1) | v(2)
|6 (1)) [7(¢) ]
and resolving system (4)—(8) relatively to highest

derivatives

(20)

Given the notation (19), we represent the system of
four differential equations (20) of the first and second
orders in the form of a system of six differential
equations of the first order:

Xy (1) =xy(1):

We write system (21) in the vector-matrix form

X(t)=
= A()-X (0)+ B-u(t)+C-M (1), (22)

where the matrices 4(z), B and C are equal:

0 F o
0 0 ]
/1,
0 0 0
0 sB=| 0 |;C= 0
RGNk
. - i 0 ]
~fie 1k |
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The stability of the dynamic system does not
depend on external influences on the system, therefore,

in equation (22) we put M ; (1)=0, and we take the
value of the speed of the center of mass of the car to be
maximum and equal v, assuming the change in speed
during braking in accordance with the formula

v(t)=v0—a-t, (23)

where a is the deceleration of the center of mass during
braking. At the time 7 =0, the movement of the car is
most stable. The stability of the car begins to decrease
with the beginning of braking, with a decrease in the

current speed of the center of mass v(r), when

v(t) =y, the stability region of a closed system in the

space of variable parameters is most voluminous and
begins to decrease with the beginning of the braking
process. When ¢=0 the equation of the perturbed
motion of the control object takes the form

X(t)=A4-X(t)+B-u(t)

where the matrix A4 is equal

0O 1 0 0 0 0

0 00 0  kk/l, O
Lm0 00 o 0 PO

0 00 —nly O 0

0 0 0 0 0 1

L0 0 0 k/I; -—cf/lk —fi/lx]

The difference vector-matrix equation connecting
the initial state of the continuous part of system (21)

X[kT] with its final state X[(k +1)T} at each
discreteness period is written in the form [12]

X[(k+1)T|=@-X[kT]+H-u[kT], (25

where the matrices @
determined by the formulas

(I):ilAiTi- H:i LB, e
S T A (i) '
i=0 i=0

and H are respectively

The number of considered members of the matrix
series (25) and (26) depends on the value of the
quantization period 7 .

Usually, when using modern onboard computers
with a short quantization period, with a sufficient degree

of accuracy it is assumed
O=E+AT; H=BT. (27)

We write the control algorithm (3) in the vector-
matrix form

U[nT]|=K-X[nT], (28)

where K is the matrix of variable parameters of the
ACS, and

K:[k ki k 000].

y My Ay (29)

In the right side of difference equation (24), we
substitute relations (27) and (28). As a result, we obtain
a difference equation that describes in finite differences
the own motion of the closed ACS of the course
stability of the car

X[(k+1)T]=(E+A4-T+B-K-T)X[kT]. (30)

Then the characteristic equation of the closed ACS
is written in the form

det[ 4-T+B-K-T+E(1-z)]=0, 31)

where z is the complex variable of the Z-
transformation of lattice functions.

Substituting the matrices 4, B, K in equation
(31) and revealing the determinant obtained, we write
the characteristic equation of the closed discrete ACS of

the course stability of the car

(1-2)° =(1-2)’ T'x
x[r—0+&J+[i-&+c—kj(l—z)4T2—
Ly Iy ) \Lo Ix Ik
k,k k

Sk 3.3 Mela'p 2.4
—— 2 (1=z) T° - 1- Tk,
(12 1 =35 (=2 T

(32)

kok ok
L (1-2) Tk, +
L1k Ly

ko k
Ly, Tk, =0,
[alkLO

According to the notation

_h Je s,

14 C
sy =0 S G
Ly Iy

Ly Iy I’
k. k k

_ "eta"p

I I Ly

q 2

4y =0k

Ly Iy

characteristic equation (32) takes the form
(1-2)° —ay(1-2)’ T+ ay (1-2)* 72 -

—a3 (1 —2)3 T —ay(1 —2)2 T4k\|'! + (33)

+ay (1-2) Tk, +agvoT%, =0,

Using the W —transformation method [13], in

. 1+w
equation (33) weset z=—.
1-w
As a result, we obtain a new characteristic
equation for a complex variable w :

(64—32aT +16a,T° —8a3T> —4a,T*ky, +2a,Tk,, +agvg Tk, )W’ + (32T = 320,77 + 24a3T" +

+16a,Tky, —10a,T°k,, —6a,v)T k)W +(16a,T% = 24a3T° —24a,T ky, +20a,T°k,, +

(34)

+15a,vT %k, )w* + (83T +16a,T*ky, —20a4T°k,, —20a,v0T %k )w’ +

+(—4as Tk +10a,Tky, +15a,v0Tk, )W +(=2a4T°k,, — 6a4voT %k )w+agvoT k), = 0.
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In characteristic (34), we make a replacement
w= jo, select the real and imaginary part, and equate

them to zero. As a result, we obtain the relations:
2a4T5092 (—034 +100° —S)kw +
+4a4T40)2 ((04 — 60’ +1)k\if + a4v0T6 k%
><(—0)6 +150% 150> +1)= ot (A6w2 —A4);
(33)
2a4T5(o(—50)4 +100° 1)k, +
+16a4T40)3 (0)2 _1)k\if +2a4v0T60)><
x(-30* +1007 -3)k, = (4 - 4507,
where 43, 44, As and Ag are equal
Ay =8asT>; Ay =16a,T° —24a;T>;
As =32ayT —32a,T? + 24a;T> ;
Ag = 64—32aiT +16a,T* —8a;T>.

In relations (35) we set k, =0. Then relations

(35) are written as
24,7° (~o* +100 =5 )k, +
= 0)2 (A60)2 —A4),'

20,7° (~50* +1007 1)k, +

+4a,T* (of‘ — 602 +1)k\4-,
(36)

+16G4T40)2 (0)2 _l)k‘l-’ = (02 (A3 —A50)2 )
Using relations (36), in the plane of the variable
parameters (kw’k\if) of algorithm (3) we construct the

boundary of the stability region of the closed ACS. In
accordance with the hatching rule [8], we consider the
determinant of the system (36)

2a4T5 x 4a4T4 X
><(—o)4+100)2 —5) ><(c04—6c02+1)
A= =
2a4T5 x 16a4T4032 x
37
><(—50)4+100)2—1) x(coz—l) 37
ot +100° -5 o 60 +1
0. 279
=8a3T 4 2 2(.2 :
=S50 +100° -1 ® (03 —1)

For small values ®, the determinant (37) is
positive; therefore, moving along the boundary of the
stability region in the direction of increase ®, the
boundary should be hatched on the left. In this case, the
hatching is directed inside the stability region (Fig. 2).

Inside the stability region G,,, we choose a point

(k:,,k:,), substitute the values k:, and k:-, in the

characteristic equation (34), and solve the equation (34)
with respect to the variable parameter ky :

-1 ((ﬂ i
-2 /~ l
)

8 é\ ‘H\\\\\UL
Ny

-600

E
\
x

k

v \
-200 0

-9
-800 -400

Fig. 2. Construction of stability region G,, in
plane (k\v’k\i/)

{B6W6 +B5W5 + B4W4 +J
k

+B3W3 +BzW2 +Blw
- S 69)

y
6 —w® +6w’ —
agvyT" -

In relation (38) we substitute w= jo and select

15w™ +
3 2
+20w° —15w" +6w—1

the real and imaginary parts. As a result, we have:

_ G WE (w)+Dy (w)Fy ().

ke ky - a4v0T6 |:E + F2 (W):| (39)
_Dy(W)E, (w)=Cy (w)Fy (w)

Imk,, = WOT()[EZ +F2(W)} (40)

where
By = 64—32aT +16a,T° -
83T ~4a, Ty, +2a, Tk, ;
Bs =32a\T —32a,T? +24a5T> +
+16a,T kg, —10a, Tk,
By =16a,T% ~24a;T° —24a,T*ky, +20a,T°ky, ;
By =8a3T° +16a4T*ky, — 200,k ;

By =—4a,T*ky +10a,Tky,; B = —2a,T°k,,.

C (w)=

y —B6W6 +B4W4 _Bzwz;

Dy (w) = BSWS —B3w3 + Byw;

Ey (w) = w0 —15w* +15u? -1,

Fy (w) = 6w — 20w + 6w.
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Using relations (39) and (40), we construct the
boundary of the stability region G, of the closed ACS

of the course stability of the car in the plane of the
complex parameter &, (Fig. 3). This region represents a

segment of the real axis, concluded between the origin
and the point of intersection of the boundary of the
stability region with the real axis of the complex plane

(Reky,lmky).

Imk
80 z

60

40

20 ‘

50 100 150

Fig. 3. Construction of stability region Gy in plane

(Reky,lmky)

In the future, to clarify the areas of stability G,,
and G, , we use the iterative process developed by the

authors described in [1]. As a result, we obtain the set of
possible values of the varied parameters of the ACS
Gy, , which is the intersection of the sets G, and G, :

G =G, NG,

In this example, the values of the parameters of the
mathematical model (4)—(8) were taken equal:

Ly=10" H; y=30Q;
1, =0,98-102 N-m-s°; f, =0,55N-m-s;
¢ =1,01-10° N-m; k, =10 N-m-A7";
ky ==0,5-10" N-m-Pa™"; k, =3,5-10° Pa;

I, =1750 N-m-s?; T =0,003s.

Using the algorithmic method of parametric
synthesis described above leads to the following optimal
values of the variable constants of the stabilization
algorithm (3):

0_ o0 _ e 20 _ .
kw =-13,65 V; k\l'! =-4,07 Vs, ky =41,02 V-m

It was shown in [14] that a random process
M 4 (t) is determined by the relation

My (1)=Mpy(1)=Mp(1): (41)

where M 4 (1), M P (¢) are the moments of resistance

to the rolling of the wheels of the left and right side of
the car, which are random functions that depend on the
properties of the soil and the microprofile of the surface
of movement under the corresponding side. Method for
generating implementations of a random function

Vi)
J

implementation of a random function M (1),

j=1,_N, where j is the number of the

N —the

number of implementations described in [15] for
various types of the motion surfaces and various speeds
of the center of mass of the car.

The accuracy of solving the problem of parametric
synthesis of ACS depends on the accuracy of estimating
the additive functional (9), which is determined by the
number of implementations N of the random process

M ; (1), j= I,N. Functional (9) is calculated by
adding one more differential equation

j .2 2.2 .

] (£)=Bws (1) +B3W} (1)+B3y5 (1); j=1N . (42)

to the mathematical model of the closed (21), (3).
For N implementations of a random process

M () on solutions of the closed ACS, we find N

S

implementations of a random function (42). From

relations (9) and (42) it follows
1;(K) =] (v.K), *3)

therefore,

1(K)=M{x] rK}=%§:x .K).

(44)
() =

—_

We estimate the variance of a random variable (43)
[16]:

(45)

We set the necessary accuracy of the estimation of
functional (44) or the quantities € and B, for which

P{ |1 (K)-1(K)|<ef=B.

In accordance with [16], for a given value 3, we find
the coefficient 73 and the required number of
implementations of the random function M ; (1), j= LN

_ D(K)f _
N — N=[N|,
€

where (()—‘ is the Iverson symbol, meaning rounding
the number (-) to the nearest larger integer.

Conclusions

The “frozen coefficients” method, which is widely
used in the practice of developing systems for the
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automatic control of non-stationary objects, is not
theoretically substantiated and often leads to high
dynamic errors of closed ACS.

The main requirements for the automatic control
system of the course stability of the car are stability and
high accuracy of the stabilized process.

Quantitatively, these requirements can be
estimated by the value of the mathematical expectation
of the additive functional, the integrand of which is a
quadratic form of the “main coordinates” of the
mathematical model. The model describes the random
stabilized process of the course deviation of the body of
the car from a given direction of movement and lateral
displacement of the center of mass of the body from a
given trajectory during braking.

An alternative to the “frozen coefficients” method
is the algorithmic method for the parametric synthesis of
automatic control systems for non-stationary objects,
based on the direct calculation of the mathematical
expectation of the additive integral quadratic functional,
calculated on the basis of the mathematical model of the
closed ACS with the subsequent selection of the weight
coefficients of the additive functional and its
optimization using the Optimization Toolbox software
package @ MATLAB and Minimize  software
MATHCAD. The optimal solution to the parametric
synthesis problem is found on the set of permissible
vectors of variable constants of the control algorithm,
which is the intersection of the stability regions of a
closed system in each of the control channels.
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I[IapameTpu4HuUii CHHTE3 HeCTALLIOHAPHOI CHCTEeMH
aBTOMATHYHOI0 KEePYBaHHS KyPCOBOIO CTiHKICTIO aBTOMOOiIs1

€. €. Anekcanzpos, T. €. Anekcanzaposa, I. B. Kocrsnuk, . 1O. Mopryn

AHoTanisi. Meroz «3aMOpOKEHHUX KOe(illi€HTiBY, 110 MHPOKO BUKOPUCTOBYETHCS B IPAKTHUILII aHATI3Y 1 CHHTE3y CUCTEM
aBTOMAaTHYHOTO KEPYBaHHs HECTAI[IOHAPHUX IMHAMIYHUX CHUCTEM, HE Ma€ CTPOroro TEOPETUYHOro OOIPYHTYBAHHS 1 HE 3aBXKIU
NPUBOINTE 10 OakaHUX pe3ynbTrariB. OCHOBHMMM BHMOTaMH, IO IPE'SBISIIOTHCS IO CUCTEMH aBTOMATHYHOIO KEPYBAaHHS
KYPCOBOIO CTilKiCTIO aBTOMOOLIS, € CTIHKICTh i BUCOKa TOYHICTH Ipornecy cradimizarii. KilbkicHO 1i BHUMOTM OLIHIOFOTHCS
3HAYECHHAM MaTeMaTUYHOr0 O4YiKyBAaHHS aJUTHUBHOrO (pyHKIiOHaNy sSKOCTi, mifiHTerpaipHa (YHKLis SKOro — KBaJpaTHYHA
(bopMa «rOJOBHUX KOOPIMHAT» MAaTEeMAaTHYHOI MOJEN, sKa OIMCYE BHIIAJKOBUH Ipolec cTabinizalii KypcOBOIO BiIXMIICHHS
KOpITyCYy aBTOMOOLIS BiJl 3a[JaHOr0 HANpPSAMKY pyXy Ta OIYHOro 3CyBY LEHTPY Mac KOpIyCy Bij 3a/laHOl TpaekTopii B mpoueci
rajbMyBaHHs. Y 3B'I3Ky 3 LIMM JJI BHUPILIEHHS 3a/adi MMapaMeTPUYHOr0 CHHTE3Yy HECTalliOHAPHOI CUCTEMH aBTOMATHYHOIO
KEpYBaHHS KYpPCOBOK CTIiHKICTIO aBTOMOOIIS pO3IIINAEThCA ANTOPUTMIYHMKH MeTox BHOOpY BapilioBaHMX IapaMeTpiB
PEryasTopiB HeCTalliOHapHUX O00'eKTiB, 3aCHOBAHMH Ha MPAMOMY OOYMCIEHHI MAaTeMaTHYHOrO OYiKYBaHHS AaJIUTHBHOIO
IHTErpajJbHOr0 KBaJPaTUYHOro (YHKIIOHANY, IO OOYMCIIOETHCS Ha PILIEHHAX MaTeMAaTHYHOI MOJENi 3aMKHEHOI CHCTeMHU
aBTOMAaTHYHOTO KEPYBaHHS 3 MOJAJbIINM BHOOPOM BaroBux Koe(illi€HTiB aJUTHBHOrO (PyHKI[IOHANy Ta HOro oNTHUMIi3ali€ro 3
BUKOPHUCTaHHSM IIporpamMHux npoaykriB Optimization Toolbox i Minimize nporpamuux naxeris MATLAB ta MATHCAD
BianoBinHo. OnTHManbHe pIlIEHHA 3ajadui MapaMeTPUYHOrO CHHTE3y BIJLIYKYEThCS HAa MHOXMHI JOHMYCTHMHX BEKTODIB
BapilloBaHMX KOHCTaHT aJITOPUTMY KEPYBaHHS, IO NPEACTaBII€ COOOK NEpeTHH obylacTell CTIHKOCTI 3aMKHYTOI CHCTEMH B
KO)KHOMY 3 KaHaJiB KepyBaHHs. AJIOPUTMIYHHMI METOJ NMapaMeTpPHYHOrO CHHTE3Y, L0 BUKOPHCTOBYETHCSA B CTATTi, MiJBUIIYE
TOYHICTH PIIICHHA 3a/1a4i, TaK SK BUIbHHUI Bil HEIOJNIKIB, SIKi IPUTAMaHHI METOJY «3aMOPOXKEHHX KOe]illieHTiBY.

Karo4doBi ciaoBa: HecraumioHapHa AMHAMIiYHA CHCTE€Ma; AaAMTUBHUK (DyHKIIOHAN sKOCTi; BapilioBaHi mHapameTpu
peryisropa; BaroBi KoedillieHTH aJUTUBHOTO (DYHKIIIOHAITY; IMHAMIYHA TOUHICTh CHCTEMM KypCOBOI CTIHKOCTI aBTOMOOLIIS.

ITapamerpuyeckuii CHHTe3 HECTALMOHAPHOI CHCTEMBbI
aBTOMATHYECKOr0 YIPaBJIeHHsI KypCOBOii YCTOIYMBOCTHI0O AaBTOMOOHISK

E. E. Anexkcannpos, T. E. Anekcannposa, H. B. Koctsauxk, 5. 10. Mopryn

AnHoTanus. [lupoko wucrone3yemblii B NpaKkTHKE aHaIM3a ¥ CHHTE3a CHCTEM aBTOMAaTHYECKOIO YIPaBICHUS
HECTAIlMOHAPHBIX JMHAMUYECKHX CHCTEM METOJl «3aMOPOXEHHBIX KOI(Q(UIMEHTOB» HE HMEET CTPOroro TEOPETHYECKOIro
000CHOBAaHMS U HE BCErja IPHUBOAUT K KellaeMbIM pe3yibraTaM. OCHOBHBIMH TPEeOOBaHUSIMH, MPEIbABISIEMBIMU K CHCTEME
aBTOMATHYECKOr0 YIPABICHHUS KypCOBOH YCTOHUMBOCTBIO aBTOMOOWIIS, SBISIIOTCS YCTOWYMBOCTh M BBICOKAask TOYHOCTh
crabunusupyemoro mpouecca. KonnuecTBeHHO 3TH TpeGOBaHHMS OLIEHMBAIOTCS 3HAYEHHEM MATEMATHUECKOIO OXKMIAHMS
aJIMTUBHOrO (DYHKIMOHANA Ka4yecTBa, IOIbIHTErpajibHast (YHKIMS KOTOPOro MHPEICTaBiIseT COOOH KBaipaTHUHYIO (Gopmy
(@JIaBHBIX KOODAMHAT» MaTeMAaTH4YeCKOH MOJEIH, OIMCHIBAIOLIECH CIydaliHbI CTAOMIM3UpYEMBIH IIpolecc KypcoBOrO
OTKJIOHEHHUSI KOpITyca aBTOMOOWJIS OT 3aJJaHHOIO HAIpaBIEHMS JBIDKCHUS M OOKOBOIO CMEIIEHHS LIEHTpa Macc KopIyca OT
3aJlaHHOH TpPAeKTOpUM B IIpoLlecce TOPMOXKEHMS. B 3TOH CBA3M Ui pelIeHHs 3ajayd apaMeTPUYecKOro CHHTe3a
HECTAllMOHAPHOW CHUCTEMBI aBTOMATHYECKOrO YIPaBICHHS KypCOBOH YCTOMYMBOCTBIO aBTOMOOMIA —paccMaTpHBAcTCS
JITOPUTMHUYECKUIT MeTO]| BbIOOPa BaApbUPYEMBIX [1APAMETPOB PEryIITOPOB HECTALOHAPHBIX 00BEKTOB, OCHOBAaHHbIN Ha IPIMOM
BBIYHCIICHUH MAaTEMaTH4eCKOro OXHJIAHHMSA aJJIUTHBHOTO HMHTETPAIBHOrO KBAaJPATUYHOrO (HYHKIMOHANA, BBIYUCIAEMOro Ha
PEIICHUAX MaTeMaTH4eCKOH MO 3aMKHYTOH CHCTE€Mbl aBTOMATHYECKOTO YIPAaBJICHHUS C IMOCIELYIOIUM BBIOOPOM BECOBBIX
k03 duIMeHToB a[IMTHBHOrO (QYHKIMOHAIA M €r0 ONTUMH3AlMeH C HCHOJIb30BAHMEM HPOrpaMMHBIX NpoaykToB Optimization
Toolbox u Minimize nporpammubix nakeroB MATLAB u MATHCAD coorBerctBeHHO. OnTuMaibHOE pEIICHUE 3a1aud
[IAPaMETPUYECKOr0 CHHTE3a OTBICKMBACTCS HA MHOXKECTBE JOIYCTUMBIX BEKTOPOB BapbHPYEMbIX KOHCTAHT aJrOpUTMa
yIpaBieHus, MpeJCTaBisIomero coboil nepeceueHue obnacTei yCTOHUMBOCTH 3aMKHYTOH CHCTEMBI B KaKIOM M3 KaHAJIOB
ynpasienus. Vicnonb3yemslil B CTaTbe all'OPUTMHYECKUH METOJ| MapaMeTpUUYEcKOro CHHTE3a IOBBIIIAET TOYHOCTb PEIICHUS
3a/1a4y, TaK KaK CBOOOJIEH OT HEJIOCTAaTKOB, IPUCYIINX IIMPOKO HCIIOIb3YeMOMY METO/Y «3aMOPOIKEHHBIX KO3 (HUIICHTOBY.

KaoueBble cioBa: HecTalMOHAapHAas JUHAMHYECKas CHCTEMa; aJJUTHBHBIA (YHKIIMOHAJI KadyecTBAa; BapbHpyeMble
rapaMeTpbl PeryssiTopa; BecoBble KOI(P(HIMEHTH aJyIMTHBHOrO (pyHKIMOHAA; AUHAMIYECKas TOYHOCTh CHUCTEMBI KypCOBOW
YCTOMYUBOCTH aBTOMOOHIISL.
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