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MATHEMATICAL MODELS OF THE FAILURE FLOW 
OF THE AIRCRAFT ELECTRONIC SYSTEM COMPONENTS  

 
Abstract.  The subject of the article is the process of functioning of the modern aircraft electronic system, its 
components and functional units as an object of mathematical model. The purpose is to analyze an existing mathematical 
apparatus, which is used to calculate the failure flow of the plane radio-electronic system and opportunities for its 
improvement. Tasks: to build mathematical models of the failure flow of components, functional units and the plane radio-
electronic system as a whole with an unlimited number of recoveries with different depth of resource recovery. The 
analyzed methods are: parametric methods and probabilistic methods for assessment failureless. The results obtained: 
mathematical models of the failure flow of the circuit positions of the aircraft electronic system were developed. 
Conclusions. A generalization of the well-known mathematical models of the failure flow with an unlimited number of 
minimum restorations of finite duration is obtained as a result of consideration of mathematical models of the failure flow of 
the circuit positions of the plane radio-electronic system. 
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Introduction 
Formulation of the problem in general. Scientific 

and technological progress has led to the improvement of 
the element base, a significant change in the nature of the 
operation and maintenance of the modern aircraft 
electronic systems (AES).  

Microelectronic components are the basis of modern 
avionics. Digital technologies with a high degree of 
integration make it difficult to use the existing scientific 
and methodological apparatus for assessing AES failures. 
The reason for this is the production of rough and 
overvalued forecasts of the failureless of the aircraft 
electronic system. These facts necessitate a critical 
analysis of well-known models for assessing failures and 
calculating the indicators of the residual resource of 
aircraft electronic system and its components.  

The purpose of the analysis is to assess the residual 
resource and to extend the assigned time life while 
maintaining appropriate performance indicators [1]. 

Analysis of the References. Currently, the 
introduction of modern element base into radio-electronic 
equipment is not fully taken into account [2–6].  

The widespread use of microelectronic 
components leads to dramatic changes in the failure 
flow in electronic systems.  

Known mathematical models for assessing the 
reliability and failureless do not allow to obtain 
adequate results [5-12]. 

Accordingly, it is necessary to improve the 
existing scientific and methodological apparatus used to 
simulate the failure flow (failureless) of circuit positions 
(components, functional units and systems) of the 
aircraft radio-electronic system. 

The aim of the article is to develop mathematical 
models of the failure flow of the circuit positions of the 
plane radio-electronic system. 

Main part 
Mathematical models of the failure flow of the 

aircraft's AES components with an unlimited 
number of recoveries of different depths. In the 
general case, in the restored object, the replacement of 
the failed element is made by serviceable elements that 
have lost a certain technical resource. The literature [13] 
shows the relationship between the failure flow 
parameter and the distribution density of the time 
between failures for the case of an unlimited number of 
full recoveries. The failure flow parameter with an 
unlimited number of full recoveries is most fully 
investigated in the monograph [14]. In [15], the 
dependence of the failure flow parameter on the density 
of the distribution of the time between failures with an 
unlimited number of minimum recoveries was obtained. 
For this case, it has been shown analytically and 
experimentally confirmed that the failure flow 
parameter coincides with the failure intensity [16]. In 
the case of complete recoveries, the integral equation 
obtained in [8] follows from the integral equation 
obtained in [14]. Naturally, both assumptions about the 
state of replacement elements before they are used are 
extreme. They can serve to find the lower and upper 
bounds on the reliability estimates of elements and 
systems. For long-term operation, these boundaries are 
quite wide and, therefore, the accuracy of calculating 
reliability indicators is low. 

Following [16], we obtain an expression for the 
failure flow parameter when replacement elements have 
spent a certain technical resource. 

Let the elements of certain circuit positions (main) 
are in the mode  ; replacement elements (spare) are in 
the mode  p. Then the conditional probability of 
failure-free operation of the replaced (restored) element 
during the time  t  in the mode  , provided that the 
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element is in the mode  р  for replacement and has not 
failed for the time  , can be written as: 

 
 
     

, ,

, , ,

      

       

в pP t

P t x P x
 (1) 

where  x  is the operating time of the element in the 
mode  , equivalent to its operating time   in the mode 
 p , provided that the resources they spent in these 

modes are the same (or  x  is the value of the spent 
resource of the element in the mode  ). 

Relation (1) is correct if the failureless of the 
replacement elements after setting them in the mode   
does not depend on how the resource was spent, but 
depends only on the amount of the spent resource in the 
past. Physically, this means that in the materials of the 
elements there were no qualitative changes in the 
properties when working in the modes   and  p . 

Note that the value  x  can be found from the 
condition of equal resources in accordance with the 
Sedyakin principle (or other principles known in the 
scientific and technical literature) 

  
 

 
0 0

, ,
 
     

x

pz dz z dz .  

We find the conditional distribution density of the 
operating time of the element to failure, taking the 
derivative according to t  the expression (1): 

       , , , , ,            в pf t f t x P x .  (2) 

Then, substituting the found distribution density in 
the Volterra equation, we obtain: 

   
  

    
0

,
,

,
    

      
 

t f t x
t f t d

P x
.     (3) 

We now consider individual cases that follow from (3). 
1. A case of complete recovery, that is, the 

replacement of failed elements is carried out by new 
ones. Then   0 x ;   , 1  P x , and from (3) 
follows the well-known formula: 

        1 1
0

, ,         
t

t f t f t d . (4) 

2. The case of minimal updates, that is, the 
replacement of failed elements is carried out by workable 
elements that have developed the same resource as the 
main elements. Then    x ,     ,   P x P  and 
from (3) the integral equation follows 

     
 

2
2

0
1
  
    

  

t

t f t d
P

. (5) 

We now prove that (5) implies the equality 
    2  t t , (6) 

that is, the failure flow parameter with minimal 
recovery is equal to the failure rate. 

Equality (6) is obtained by differentiating 
expression (5) by t : 

       
     

 
2 2

2
0

   
      

 
t

t f t f t d f t
P P

.   (7) 

It follows from (5) that 

  
 

 
 

2 2

0
1

  
 

t t
P t f t

. (8) 

Substituting (8) into (7), we obtain 

         2 2 0      t t t t .  

The solution of this homogeneous differential 
equation has the form: 
    2  t c t .  

The integration constant is as follows. From 
equation (8) and the obvious  

        0 0 0 0  f P f   

it follows  
        2 0 0 0 0     f c ,  

that is 1c . So,    2  t t .  
We examined the case of instantaneous recovery. 

With non-instantaneous incomplete recovery, it can be 
shown that the following relation holds for the failure 
flow parameter: 

   

 
    

  

2

0 0



  

     
    

   
t t

t f t

g f t x t
d d

P x
,     (9) 

where  g t  is the density of the distribution of the 
recovery time of the failed element. 

We consider individual cases for non-
instantaneous incomplete recovery arising from (9). 

1. The case of complete recovery. Then 
  0   x ;          P x P  and from (9) 

follows: 

         1 1
0 0


            

t t
t f t g f t d d . (10) 

2. The case of minimal recoveries. The case of 
minimal updates. Then  

          x ;    1   P x   

and from (9) follows: 

       
 2 2

0 0
1

 
        

    
 
t t g

t f t d d
P

.   (11) 

In [14], for the exponential law of the distribution 
of the recovery time     g e , the following 
expression was obtained for the failure flow parameter: 
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t

t z
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  (12) 

Note that with the exponential law of the 
distribution of the time between failures, equation (4) 
coincides with equation (5), and equation (10) coincides 
with equation (11). In this case, with instantaneous 
recovery    1 2    t t  and 

      
1 2

   
           

tt t e  (13) 

with non-instantaneous recovery. 
At an exponential distribution density of the recovery 

time, the expression in parentheses is an unsteady 
availability factor  гК t . It is obtained under the 
condition that at the time 0t  the element is operational, 
that is at  0 1гК . From formula (13) it can be seen that 
the parameter of the failure flow at the moment is 
    1   гt К t  (14) 

failure rate multiplied by the probability that the 
element is in a working condition at a given time t . 

From (14) find the stationary value  1 t  

  1lim


   гn
t К ,  

that is, with the exponential laws of the distribution of 
uptime and recovery time, the failure flow parameter 
decreases from the value  1 0    and tends to a 
constant value equal to  гК . Moreover, the longer the 
average recovery time, the smaller the value of the 
failure flow parameter. This is due to the fact that when 
restoring the device, the element to be replaced does not 
function and does not consume its resource. The effect 
of reducing the total operating time of an element for a 
fixed time is created. 

Now we obtain a generalization of the result (12) for 
the case when the law of distribution of the recovery time 
differs from the exponential one and is characterized by 
the recovery intensity   t . In this case, the elements at a 
time 0t  are in working condition with probability  . 
If the element is in an operational state at the moment t , 
then its failure-free operation is characterized by the 
failure rate   t  and does not depend on the number of 
failures that occurred before the time t , and the length of 
time since the last recovery. The behavior of such an 
element in the device can be described by the following 
system of differential equations 

 
         
         

0 0 1

1 0 1

,

,

    
    

P t t P t t P t

P t t P t t P t
, (15) 

where  0P t ,  1P t  are the probabilities of finding an 
element, respectively, in a working and non-working 

states. The solution to this system, taking into account 
the normalization condition    0 1 1 P t P t  and the 

initial condition  0  P t , is 

         
0

0

        
  


t

F t F z
гK t P t e z e dz ,     (16) 

where        
0

  
t

F t z z dz .  (17) 

Then the element failure flow parameter will be 
found as the multiplication of the element failure rate at 
the moment t  and the unsteady availability factor, 
namely 
      2   гt t К t .  (18) 

Relations (16)–(18) are a generalization of 
previously considered models with non-instantaneous 
recovery. So, in particular, result (12) is a special case 
from (16)–(18) when substituting the recovery 
intensities    t  in them for the exponential 
distribution density and the initial condition 

 0 1  гК , and result (13) – when substituting 

   t ,    t , and 1  . 
Thus, various mathematical models of the failure 

flow of renewable elements with an unlimited number 
of instantaneous and finite recovery times with different 
resource recovery depths are considered. A generalized 
failure flow model with incomplete recoveries is 
obtained. Failure flow models with full and minimum 
recoveries arising from a model with incomplete 
recoveries, as special cases under the appropriate 
conditions in which replacement elements are located. 

A more general expression is obtained for the 
failure flow parameter with minimal non-instantaneous 
updates than previously known. 

Failure flow models with full and minimal 
recoveries can be used to calculate the upper and lower 
estimates of the real reliability of the systems depending 
on the nature of the restoration. So, if in the process of 
system recovery most of the elements are replaced with 
new ones, then models with full restorations are used. If 
during the restoration only a single defective element or 
any functional unit (PV) or part of a functional system 
(FS) is replaced by a working one that has the same 
operating time as the replaced element, then it is 
acceptable to use models with minimal recovery. 
However, for solving problems investigating the long-
term operation of systems, such boundaries are wide 
enough, and the accuracy of estimating the parameter of 
the failure flow may be low. In this case, models with 
incomplete restorations must be used. 

The considered mathematical models of the flow 
of failures should be used in assessing the reliability 
indicators of devices according to the failure statistics of 
recovered systems. From the failure statistics, you can 
get direct values of the failure flow parameter (t). 
After that, knowing the nature of system recoveries 
during operation and using appropriate models with 
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minimal, incomplete, or full recoveries, one can obtain 
estimates of the failure rate   t , or distribution density 
of duration of failure-free operation. 

Mathematical models of the failure flow of AES 
components with a limited number of restorations of 
different depths. The vast majority of the circuit 
positions of the AES during the designated service life 
does not fail. A significant part of the elements fails one 
to two times, an even smaller part - three to four times, 
etc. [17]. Replacing a failed (defective) component of a 
specific circuit position of the AES can be carried out 
by a new component, recovered component or 
component, which has spent part of its resource. 
Therefore, it is necessary to develop models of failure 
flows with a limited number of recoveries 
(replacements) and different depths of the recovered 
resource. As in the case of an unlimited number of 
recoveries, we first consider mathematical models of the 
failure flow with a limited number of instantaneous 
recoveries, and then models with a limited number of 
non-instantaneous recoveries. 

Mathematical model of the failure flow of a 
component circuit position with a finite number of 
complete instantaneous restorations. 

The recovery theory shows that the failure flow 
parameter of an element with complete recoveries is 
characterized by a series 

    1
1




  k

k
t f t , (19) 

where  kf t  is the density of the distribution of the 
value of the component operating time to k -th failure 

1 k
k iix , 1k ; i  is random of component 

operation after ( 1i )-th recovery. 
In the case of complete recoveries, the distribution 

density of the value  kx t  is as k -multiple convolution 
of the density of random variables i : 

      1 1 k kf t f t f t .  

The number of recoveries  n t  during the 
assigned service life (or assigned resource) is expected 
to be known. It is due either to the component ultimate 
failure, or technical and other restrictions on the number 
of recoveries. With a known number of complete 
recoveries  n t  the considered operating time, the 
failure flow parameter is determined by the expression 

    
 

1
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k
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So, for normal distribution  
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For exponential distribution  
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For the Erlang distribution of the m-th order 

    
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Convolution calculation  kf t  is an easily feasible 
operation for a limited number of distributions, such as 
a normal, exponential, gamma distribution. 

Let us now consider a mathematical model of the 
failure flow with a finite number of instantaneous 
minimum recoveries. 

It is known that the process of recovery of FS AES 
at intervals between full resource recoveries is 
characterized, as a rule, minimal recoveries. At the 
minimum recoveries the densities of distribution of size 
of operating time to k -th minimum recoveries are 
various. Based on the fact that the density distribution of 
the value Xk is random, the operating time of the circuit 
position to the k -th minimum instantaneous recovery is 
determined by the expression 

      
  

   
1

2 exp
1 !



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k

k
t

f t t t
k

, (21) 

where    
0

  
t

t x dx .  

Since the density distribution of the value of 
random operating time before the first failure  

      exp    f t t t ,  

we have    
  

   
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2
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
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k

k
t

f t f t
k

.  

Then the failure flow parameter for the finite 
number  n t  of minimum instantaneous recoveries can 
be found by relation (20): 

        
 

 

   1
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1 1 1 !
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k
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Relation (22) for  n t  can be written as: 

      
 

 
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exp
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k

t
t t t

k
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Note that in the case of an unlimited number of 
minimum recoveries for n , the failure flow 
parameter is equal to the failure rate  

         2
1

exp !



             k

k
t t t t k t . 
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This corresponds to the result (6) discussed above. 
Therefore, the correctness of the obtained result for the 
mathematical model of the failure flow with a finite 
number of instantaneous minimum recoveries is 
confirmed. Here are the main calculated relations for 
different densities of time distribution: 

а)        1 2 2
02 exp 2

        
f t с t T ; 

  1
0


    c T . 

     21 00
22 exp

2

                    

t TT t
t .  (24) 

The calculation of the characteristic is connected 
with the integration of expression (24), which should be 
carried out by the numerical method; 

б)         tf t t e ;     1      t t t . 

Then    
0 0

ln 1
1 1

  
        

    
t tt dt dt t t

t
. 

Using expression (20), we obtain 

   

        
 

2

1

1
exp ln 1 1 ! .





   

           
n t k

k

t t

t t t k
(25) 

Consider a mathematical model of the failure flow 
with a finite number of instantaneous incomplete 
recoveries. 

Above was introduced the concept of a complex 
recovery process. It is characterized by different 
densities of the distribution of the values of the 
operation before the first and between subsequent 
failures  1,k kf t ,  1,2, , k n t . The density of the 
distribution of operation to k -th incomplete recovery is 
characterized by k -th convolution 

          3
0,1 1,2 1,    k kkf t f t f t f t .  

In turn, the failure flow parameter for instantaneous 
incomplete recoveries is found by the ratio 

      3
3

1
 

n

k
k

t f t . (26) 

Note that when predicting the component failure 
flow parameter of a certain circuit position, different 
variants of the description of the distribution density 

 1,k kf t  are possible. They are determined by the 
nature of the recoveries of the defective component, the 
replacement strategy and other factors. 

Thus, the operating time of a certain schematic 
position before the first failure  0,1f t  can be distributed 
according to the normal law, and between failures – 
according to the Weibull distribution. Or the operating 
time before the first failure and between subsequent 
failures obey to a normal distribution with different 
values of mathematical expectation and standard 

deviation. If the operating time of the circuit position 
before the first failure and between subsequent failures 
obey the normal distribution with the parameters iT  and 
i , then the density of time distributions to the k -th 
failure will look like 

 

     
   

1/23 2
1

2 2
1 1

2

exp 2 .





 

   

 
    

 



 

k
k i

k k
i i

f t

t T
 (27) 

The derivation of expression (27) is based on the 
fact that the sum of normally distributed random 
variables obey to the normal distribution. Then the 
failure flow parameter with a finite number of 
instantaneous incomplete recoveries has the form 
described by the model of a complex recovery process: 

 
   

 

   

1/22
3 1

1
2 2

1 1

2

exp 2 .






 

    

 
    

 

 

 

n t
k
i

k

k k
i i

t

t T

 (28) 

From expression (28) we can obtain ratios for 
simple and general recovery processes as individual 
cases of complex. 

If the operating time of a certain circuit position 
before the first failure and between subsequent failures 
are described by an exponential law with parameters 
i , then the density distribution of the operating time 
k -th failure is a generalized Erlang's law of the k -th 
order 

 

     

   
 

3 1

11 1
exp .



  

  

     

k
k

k kk

i j j l
ji l l j

f t l

t
 (29) 

Then the failure flow parameter with a finite 
number of instantaneous incomplete recoveries has the 
form 

 

     
 

   
 

3 1

1

11 1
exp .





  

   

    



 

n t
k

k
k

k kk
i j j l

ji l l j

t l

t

 (30) 

Now we present models of failure flow of the 
circuit position with a limited number of finite duration 
recoveries. First, consider a mathematical model of the 
failure flow with a limited number of complete 
recoveries of finite duration. 

There are the following dependencies for the 
failures flow of the circuit position, the duration 
recovery of which can not be neglected (Fig. 1): 

 

 
Fig. 1. Alternating process of failures (recoveries)  

with a limited number of recoveries 
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2
1 k

i  1 1 X , 2 1 2 1, ,      X  1, 2, , i n , 

1 1



 
    

i i l
i l l

l l
X , that is  1

1



  

i
i l l

l
X , 

where 0 0  , l  is duration of l -th full recovery. 
The values i  and i  are assumed by independent 

random variables with distribution functions 
     iF t P t  and      iG t P t  with 

mathematical expectation oT , вT  and standard deviation 
l , в  with continuous densities of distribution of 
quantities    f t F t  and    g t G t . 

The process defined in this way is called the 
recovery process with a final recovery time. You can 
write the following distribution functions for this process: 

  
1

     
  

k

k i
i

F t P t ;  
1

     
  

k

k i
i

G t P t ;  

      k kt P X t   

and their distribution density 
    k kf t F t ;    k kg t G t ;      k kt t .  

These distribution functions are determined by the 
original laws  F t  and  G t  as follows 

      
0

 
t

k k lF t F t x dF x ,    lF t F t ,  

      
0

 
t

k k lG t G t x dG x ,    lF t F t ,  

      
0

  
t

k k kt F t x dG x .  

Then the failure flow parameter of the circuit 
position with a finite number of complete non-
instantaneous recoveries can be written as 

    
 

1
1

  
n t

k
k

t t . (31) 

We extend this result to the process of failure of 
the circuit position with a limited number of minimum 
recoveries of finite duration. 

The failure flow of this process is characterized by 

the density distribution of a random variable 1 k
ii : 

    
 

   
1

2

1 !


  



k

k
t

f t f t
k

,  

and the flow of recoveries by the density distribution of 
a random variable 1 k

ii ,    k kg t G t . 
The probability density distribution of a random 

variable kX ,  1,2, , k n t  is a convolution 

        2  t
kk kt f g t .  

Then the required ratio for the failure flow 
parameter has the form 

      
 

2
2

1
  

n t

k
k

t t . (32) 

Similarly, it is possible to expand the mathematical 
model of the failure flow with the limited number of 
complete recoveries for the process of the circuit 
position failure with the limited number of incomplete 
recoveries of finite duration. 

The failures flow of the circuit position with 
incomplete recoveries of finite duration is characterized 
by the density of distribution of random variables 

   
1

3~



k
i

i
kf t  and  

1
~




k
i

i
kg t . Then the 

distribution density of the random variable 

 1 0
1

, 0


    
k

k l l
l

X  is a k -multiply convolution: 

          3 3   kk kt f t g t .  

The failures flow (recoveries) parameter of this 
process is calculated by the ratio 

        
 

33

1
  

n t

k
k

t t .  (33) 

The presented rations (20), (26), (31)–(33) for 
calculation of failures flow parameter with limited 
number of recoveries of various depth are reduced to 
performance of operations of convolution. Convolution 
calculations are easy to perform for a limited number of 
typical random variable distributions. In the general 
case, the use of numerical methods is required. 

The number of recoveries (or failures)  n t  of 
components at a certain circuit position for the 
considered operation may be due to technical reasons, 
economic feasibility, safety and environmental 
performance requirements, the final failure. Below, we 
consider the estimation of the boundary number  n t  of 
component’s recoveries of a certain circuit position of 
AES for the assigned operating time (service life). 
Depending on the depth of recovery, the following 
options for estimating the value  n t  are possible. 

A. The case of complete recovery. It is known 
from the recovery theory that the number of failures 
 n t  has an asymptotically normal distribution with 

mean   0Mn t t T  and dispersion   2
0 Dn t t T  

during 0t T . The boundary number of failures 
(recoveries) can be selected so that 

   0  P n t n . (34) 

At large  0t t T  random variables  n t  have 
an approximately normal distribution. Then for 0n  you 

can take the value 2 3
0 0   ln t T u t T , where 

lu  is the quantile of normal distribution. 
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For small  0t t T , or 0t T  the boundary 
number of failures can be found from condition (34) by 
the method of convolutions. To do this, it is necessary to 
consistently find the function of the distribution of 
operating time to the first, second and largest number of 
failures to fulfill the condition (34) 

В) The case of incomplete and minimal recoveries. 
We can assume that the function of distribution of 
operating time before failure belongs to the class of IIF-
distributions. Recall that the distribution function  F t  
is called IIF-distribution, if the probability 
   F t x F t  at an arbitrary constant 0x  decreases 

monotonically by ,0   t t . The affiliation of the 
distribution function to the class of IIF-distributions is 
equivalent to the fact that the failure flow increases 
monotonically. Hence the name of the distribution class 
with an increasing failure intensity function. 

It is known from the theory of recovery [7] that if 
the operating distribution function belongs to the class 
of IIF-distributions and has a mathematical expectation 

0Т , then 

     0
0

1
0

0 0
0

!
,

!





  

n
t T

i

t T
P n t n e t T

i
. (35) 

The estimate (35) is convenient for performing 
calculations, because to use it it is enough to know the 
mathematical expectation 0Т . Another estimate for 

0t  IIF-distributions is the following [7]: 

        0 1

0
0

, 0
!







  

in
t

i

t
P n t n e t

i
. (36) 

Since for each distribution function from the IIF 
class there is an inequality   0 t t T  for 0t T , 
inequality (36) is a more precise boundary than (35). 
However, this requires an estimate of the mathematical 
expectation of the number of failures   t . 

Thus, to estimate the boundary number of failures 
(recoveries) due to the final failure of the corresponding 
component with a given probability  , it is necessary to 
solve inequality (34) or (36) with respect to 0n . 

Conclusions 
1. Mathematical models of the failures flow of 

circuit positions with an unlimited number of recoveries 
(non-instantaneous and finite duration) at different 
depths of resource recovery are considered. It is shown 
that the failure flow models with complete or minimal 
recoveries follow from the model with incomplete 
recoveries as separate cases. A generalization of the 
known mathematical models of the failure flow of 
components with an unlimited number of minimal 
recoveries of finite duration is obtained. 

2. Mathematical models of the failures flow of 
components of circuit positions with a finite number of 
recoveries (non-instantaneous and finite duration) of 
different depth during the assigned service life are 
considered. The expediency of their use in calculating 
the residual life of components and functional units of 
AES is shown. 

3. The reliability of the developed mathematical 
models of failure flows of the AES components is 
confirmed by the correctness of the performed 
transformations, the coincidence of partial solutions 
with the known results. 
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Математичні моделі потоку відмов комплектуючих виробів радіоелектронної системи літака  

С. В. Гаєвський, С.І. Хмелевський, А. В. Бойко, Т. Ю. Мищенко, О. О. Тімочко  
Анотація .  Предметом вивчення в статті є процеси функціонування радіоелектронної системи сучасного літака, 

її комплектуючих елементів та функціональних вузлів як об’єкта математичного моделювання. Метою є проведення 
аналізу існуючого математичного апарату, що застосовується для розрахунку потоку відмов та ймовірності безвідмовної 
роботи радіоелектронної системи літака та можливості його вдосконалення. Завдання: побудувати математичні моделі 
потоку відмов комплектуючих виробів, функціональних вузлів та радіоелектронної системи літака в цілому з 
необмеженим числом відновлень при різній глибині відновлення ресурсу. Аналізованими методами є: параметричні 
методи та імовірнісні методи оцінки безвідмовності роботи. Отримані такі результати. Розроблені математичні моделі 
потоку відмов схемних позицій радіоелектронної системи літака. Висновки. В результаті розгляду математичних 
моделей потоку відмов схемних позицій радіоелектронної системи літака отримано узагальнення відомих математичних 
моделей потоку відмов при необмеженій кількості мінімальних відновлень кінцевої тривалості. 

Ключові  слова:  залишковий ресурс; літак; математична модель; потік відмов; радіоелектронна система; 
технічний стан; схемна позиція. 

 
Математические модели потока отказов комплектующих изделий радиоэлектронной системы самолета 

С. В. Гаевский, С. І. Хмелевский, А. В. Бойко, Т. Ю. Мищенко, А. А. Тимочко  
Аннотация.  Предметом изучения в статье являются процессы функционирования радиоэлектронной системы 

современного самолета, ее комплектующих элементов и функциональных узлов как объекта математического 
моделирования. Целью является анализ существующего математического аппарата, применяемого для расчета потока 
отказов и вероятности безотказной работы радиоэлектронной системы самолета и возможности его совершенствования. 
Задачи: построить математические модели потока отказов комплектующих изделий, функциональных узлов и 
радиоэлектронной системы самолета в целом с неограниченным числом обновлений при разной глубине восстановления 
ресурса. Анализируемыми методами являются: параметрические методы и вероятностные методы оценки безотказности 
работы. Получены следующие результаты. Разработанные математические модели потока отказов схемных позиций 
радиоэлектронной системы самолета. Выводы. Получено обобщение известных математических моделей потока отказов 
комплектующих изделий при неограниченном количестве минимальных обновлений конечной длительности. 

Ключевые слова:  остаточный ресурс; самолет; математическая модель; поток отказов; радиоэлектронная 
система; техническое состояние; схемная позиция. 


