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MATHEMATICAL MODELS OF THE FAILURE FLOW
OF THE AIRCRAFT ELECTRONIC SYSTEM COMPONENTS

Abstract. The subject of the article is the process of functioning of the modern aircraft electronic system, its
components and functional units as an object of mathematical model. The purpose is to analyze an existing mathematical
apparatus, which is used to calculate the failure flow of the plane radio-electronic system and opportunities for its
improvement. Tasks: to build mathematical models of the failure flow of components, functional units and the plane radio-
electronic system as a whole with an unlimited number of recoveries with different depth of resource recovery. The
analyzed methods are: parametric methods and probabilistic methods for assessment failureless. The results obtained:
mathematical models of the failure flow of the circuit positions of the aircraft electronic system were developed.
Conclusions. A generalization of the well-known mathematical models of the failure flow with an unlimited number of
minimum restorations of finite duration is obtained as a result of consideration of mathematical models of the failure flow of
the circuit positions of the plane radio-electronic system.
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Introduction

Formulation of the problem in general. Scientific
and technological progress has led to the improvement of
the element base, a significant change in the nature of the
operation and maintenance of the modern aircraft
electronic systems (AES).

Microelectronic components are the basis of modern
avionics. Digital technologies with a high degree of
integration make it difficult to use the existing scientific
and methodological apparatus for assessing AES failures.
The reason for this is the production of rough and
overvalued forecasts of the failureless of the aircraft
electronic system. These facts necessitate a critical
analysis of well-known models for assessing failures and
calculating the indicators of the residual resource of
aircraft electronic system and its components.

The purpose of the analysis is to assess the residual
resource and to extend the assigned time life while
maintaining appropriate performance indicators [1].

Analysis of the References. Currently, the
introduction of modern element base into radio-electronic
equipment is not fully taken into account [2—6].

The widespread use of microelectronic
components leads to dramatic changes in the failure
flow in electronic systems.

Known mathematical models for assessing the
reliability and failureless do not allow to obtain
adequate results [5-12].

Accordingly, it is necessary to improve the
existing scientific and methodological apparatus used to
simulate the failure flow (failureless) of circuit positions
(components, functional units and systems) of the
aircraft radio-electronic system.

The aim of the article is to develop mathematical
models of the failure flow of the circuit positions of the

plane radio-electronic system.

Main part

Mathematical models of the failure flow of the
aircraft's AES components with an unlimited
number of recoveries of different depths. In the
general case, in the restored object, the replacement of
the failed element is made by serviceable elements that
have lost a certain technical resource. The literature [13]
shows the relationship between the failure flow
parameter and the distribution density of the time
between failures for the case of an unlimited number of
full recoveries. The failure flow parameter with an
unlimited number of full recoveries is most fully
investigated in the monograph [14]. In [15], the
dependence of the failure flow parameter on the density
of the distribution of the time between failures with an
unlimited number of minimum recoveries was obtained.
For this case, it has been shown analytically and
experimentally confirmed that the failure flow
parameter coincides with the failure intensity [16]. In
the case of complete recoveries, the integral equation
obtained in [8] follows from the integral equation
obtained in [14]. Naturally, both assumptions about the
state of replacement elements before they are used are
extreme. They can serve to find the lower and upper
bounds on the reliability estimates of elements and
systems. For long-term operation, these boundaries are
quite wide and, therefore, the accuracy of calculating
reliability indicators is low.

Following [16], we obtain an expression for the
failure flow parameter when replacement elements have
spent a certain technical resource.

Let the elements of certain circuit positions (main)
are in the mode ¢ ; replacement elements (spare) are in
the mode ¢, Then the conditional probability of
failure-free operation of the replaced (restored) element
during the time ¢—1 in the mode &, provided that the
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element is in the mode ¢ ? for replacement and has not

failed for the time 1, can be written as:

P, =(t—r s/ra )=

1
—P t—r+x /P M

where x(t) is the operating time of the element in the

mode &, equivalent to its operating time T in the mode
€ps provided that the resources they spent in these

modes are the same (or x(r) is the value of the spent

resource of the element in the mode ¢).

Relation (1) is correct if the failureless of the
replacement elements after setting them in the mode €
does not depend on how the resource was spent, but
depends only on the amount of the spent resource in the
past. Physically, this means that in the materials of the
elements there were no qualitative changes in the
properties when working in the modes ¢ and ¢,

Note that the value x(t) can be found from the

condition of equal resources in accordance with the
Sedyakin principle (or other principles known in the
scientific and technical literature)

x(1) .
j A(z,€)dz =jk(z,8p)dz
0 0

We find the conditional distribution density of the
operating time of the element to failure, taking the
derivative according to ¢ the expression (1):

( s/rs ) —1,+x( /P . ()

Then, substltutmg the found distribution den51ty in
the Volterra equation, we obtain:

¢
f(t—r+x(r),8)
o(r) = f(te)+ [P
'([ P(x(r),s)
We now consider individual cases that follow from (3).

1. A case of complete recovery, that is, the
replacement of failed elements is carried out by new

ones. Then x(1)=0; P(x(r),a)zl, and from (3)

follows the well-known formula:

o(t)dt. ()

®) (t)zf(l,8)+jf(f—1,8)0)1(t)dr. (@)

0

2. The case of minimal updates, that is, the
replacement of failed elements is carried out by workable
elements that have developed the same resource as the

main elements. Then x(t)=t, P(x(r),a)z P(t) and
from (3) the integral equation follows

t)[ni(’;zT(:))dr]. (5)

We now prove that (5) implies the equality
o, (1) =A(1), (6)

that is, the failure flow parameter with minimal
recovery is equal to the failure rate.

Equality (6) is obtained by differentiating
expression (5) by ¢:

/ 2

w3 (1) =f

d +f(0)2 2(1) %

It follows from (5) that

¢

mz(f)zwz(’)_l ]

o 0 o
Substituting (8) into (7), we obtain

(M (/M) 02 (1) =
The solution of this homogeneous differential
equation has the form:

wy (1) =ch(1).
The integration constant is as follows.
equation (8) and the obvious

0)/P(0)=

From

it follows
02 (0)= £(0) =2.(0) =¢2.(0).
thatis ¢ =1. So, @, (£)=%A(r).
We examined the case of instantaneous recovery.
With non-instantaneous incomplete recovery, it can be

shown that the following relation holds for the failure
flow parameter:

wy (1)=f(2)+

ft-- n+x(t+n))dndt, 9

JIg

0 r+n))

where g(¢) is the density of the distribution of the
recovery time of the failed element.

We consider individual cases for non-
instantaneous incomplete recovery arising from (9).

1. The case of complete recovery. Then
x(t+m)=0; P(x(r+n)) =P(t+n) and from (9)
follows:

¢ t—1
o (1) = f(t)+j(01 (1) J. g(n) f(t—t—m)dndz. (10)
0 0

2. The case of minimal recoveries. The case of
minimal updates. Then

x(t+m)=(t+n);
and from (9) follows:

P(x(r+n))=1

): 1+.lf(o2 (1)

w, (1) =1(¢ dndt |.

-
[ _Pg(n) (11)

(t+m)
In [14], for the exponential law of the distribution

of the recovery time g(m)=pe *", the following

expression was obtained for the failure flow parameter:
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w, ()= k(l)exp{—j[k(z)+ p}dz}x
¢ z ’ (12)
x 1+Mjexp{j[k(x)+u]dx}dz .

Note that with the exponential law of the
distribution of the time between failures, equation (4)
coincides with equation (5), and equation (10) coincides
with equation (11). In this case, with instantaneous

recovery oy (1) =, (1)=2 and

A O+
o1 (1) =0, (’)=’{xiu+me ( M’j (13)

with non-instantaneous recovery.
At an exponential distribution density of the recovery
time, the expression in parentheses is an unsteady

availability factor K, (7).
condition that at the time ¢ = 0 the element is operational,
that is at K, (0) =1. From formula (13) it can be seen that
the parameter of the failure flow at the moment is

0 (t) = }“Kz (t)

It is obtained under the

(14)
failure rate multiplied by the probability that the
element is in a working condition at a given time ¢ .
From (14) find the stationary value wy (7)
lim o () =AK,,

n—>0
that is, with the exponential laws of the distribution of
uptime and recovery time, the failure flow parameter
decreases from the value ;(0)=2 and tends to a

constant value equal to AK,. Moreover, the longer the
average recovery time, the smaller the value of the
failure flow parameter. This is due to the fact that when
restoring the device, the element to be replaced does not
function and does not consume its resource. The effect
of reducing the total operating time of an element for a
fixed time is created.

Now we obtain a generalization of the result (12) for
the case when the law of distribution of the recovery time
differs from the exponential one and is characterized by

the recovery intensity p (t) . In this case, the elements at a
time =0 are in working condition with probability vy .

If the element is in an operational state at the moment ¢,
then its failure-free operation is characterized by the

failure rate A.(¢) and does not depend on the number of

failures that occurred before the time ¢, and the length of
time since the last recovery. The behavior of such an
element in the device can be described by the following
system of differential equations

%(’)}k(f)l’o(f)w(f)l’l(f),} s
R(1)=2(0)By(1)-n()A(t). |
where Ry (t), R(t) are the probabilities of finding an

element, respectively, in a working and non-working

states. The solution to this system, taking into account
the normalization condition Fy(7)+F(7)=1 and the

initial condition Ry (¢)=vy, is

t
Kz<r>=%<r>=e‘”’>{v+f u(z)e”%}, (16

0

t

F(t) = J.{k(z)+;,t(z)}dz .

0

where

(17)

Then the element failure flow parameter will be
found as the multiplication of the element failure rate at
the moment ¢ and the unsteady availability factor,
namely

w, (1) =(2)K, (¢). (18)

Relations (16)—(18) are a generalization of
previously considered models with non-instantaneous
recovery. So, in particular, result (12) is a special case
from (16)—(18) when substituting the recovery
intensities p(7)=p in them for the exponential
distribution  density and the initial condition
K,(0)=vy=1, and result (13) — when substituting

Mit)=n, p(r)=p,and y=1.

Thus, various mathematical models of the failure
flow of renewable elements with an unlimited number
of instantaneous and finite recovery times with different
resource recovery depths are considered. A generalized
failure flow model with incomplete recoveries is
obtained. Failure flow models with full and minimum
recoveries arising from a model with incomplete
recoveries, as special cases under the appropriate
conditions in which replacement elements are located.

A more general expression is obtained for the
failure flow parameter with minimal non-instantaneous
updates than previously known.

Failure flow models with full and minimal
recoveries can be used to calculate the upper and lower
estimates of the real reliability of the systems depending
on the nature of the restoration. So, if in the process of
system recovery most of the elements are replaced with
new ones, then models with full restorations are used. If
during the restoration only a single defective element or
any functional unit (PV) or part of a functional system
(FS) is replaced by a working one that has the same
operating time as the replaced element, then it is
acceptable to use models with minimal recovery.
However, for solving problems investigating the long-
term operation of systems, such boundaries are wide
enough, and the accuracy of estimating the parameter of
the failure flow may be low. In this case, models with
incomplete restorations must be used.

The considered mathematical models of the flow
of failures should be used in assessing the reliability
indicators of devices according to the failure statistics of
recovered systems. From the failure statistics, you can
get direct values of the failure flow parameter o(t).
After that, knowing the nature of system recoveries
during operation and using appropriate models with
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minimal, incomplete, or full recoveries, one can obtain
estimates of the failure rate A(¢), or distribution density

of duration of failure-free operation.

Mathematical models of the failure flow of AES
components with a limited number of restorations of
different depths. The vast majority of the circuit
positions of the AES during the designated service life
does not fail. A significant part of the elements fails one
to two times, an even smaller part - three to four times,
etc. [17]. Replacing a failed (defective) component of a
specific circuit position of the AES can be carried out
by a new component, recovered component or
component, which has spent part of its resource.
Therefore, it is necessary to develop models of failure
flows with a limited number of recoveries
(replacements) and different depths of the recovered
resource. As in the case of an unlimited number of
recoveries, we first consider mathematical models of the
failure flow with a limited number of instantaneous
recoveries, and then models with a limited number of
non-instantaneous recoveries.

Mathematical model of the failure flow of a
component circuit position with a finite number of
complete instantaneous restorations.

The recovery theory shows that the failure flow
parameter of an element with complete recoveries is
characterized by a series

o (1) = zf (1),

where f (¢) is the density of the distribution of the

(19)

value of the component operating time to k -th failure
X, = Zf:l &, k=1; & 1is random of component

operation after (i —1)-th recovery.
In the case of complete recoveries, the distribution

density of the value x; (¢) is as k -multiple convolution

of the density of random variables &; :
i ()= feaa (£)* £i (1)

The number of recoveries n(r) during the

assigned service life (or assigned resource) is expected
to be known. It is due either to the component ultimate
failure, or technical and other restrictions on the number
of recoveries. With a known number of complete

recoveries n (t) the considered operating time, the
failure flow parameter is determined by the expression

n(l)
091(’)=k§fk(’)'

So, for normal distribution

(20)

-1 (t-kTy )
t)=(—2mko| exp|——7—
i (2) ( ) p h?
) [ k)
and o (t)= 2k exp S VA
l( ) k=l( ) 2k02

For exponential distribution

00

——e

(k-1)!

n([) 7\‘ k—l

o (1) = NCIRNEYE
o (k=)

For the Erlang distribution of the m-th order
n(l) (Kt)mk_l (—M)

o (1) =2 %

k=1 (mk—l)!e

Convolution calculation f; (¢) is an easily feasible

Ji(1)=

and

operation for a limited number of distributions, such as
a normal, exponential, gamma distribution.

Let us now consider a mathematical model of the
failure flow with a finite number of instantaneous
minimum recoveries.

It is known that the process of recovery of FS AES
at intervals between full resource recoveries is
characterized, as a rule, minimal recoveries. At the
minimum recoveries the densities of distribution of size
of operating time to k-th minimum recoveries are
various. Based on the fact that the density distribution of
the value X; is random, the operating time of the circuit
position to the k -th minimum instantaneous recovery is
determined by the expression

(A()""
(k=1)!

A(t) =jk(x)dx.

fk(z) (1)=2(t) exp[-A(r)], @D

where

Since the density distribution of the value of
random operating time before the first failure

S (#)=(e)exp[=A(7)],

k-1
(?;Et_)z)! /().

Then the failure flow parameter for the finite

72 (0=

we have

number n(t) of minimum instantaneous recoveries can
be found by relation (20):

n(r) n(7) k-1
o= 3 10 r0 L T )
k=1 k=1 :

Relation (22) for n(t) — c can be written as:

" =
o, ()= k(t)exp[—A(t)} Z% . (23)

k=1

Note that in the case of an unlimited number of
minimum recoveries for n— oo, the failure flow
parameter is equal to the failure rate

o3 (1) = (1) exp[ ~A(1)] g[_A(f)}k Jri=(1).
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This corresponds to the result (6) discussed above.
Therefore, the correctness of the obtained result for the
mathematical model of the failure flow with a finite
number of instantaneous minimum recoveries is
confirmed. Here are the main calculated relations for
different densities of time distribution:

a) f(l) =c( 2710)_1 exp[_(t_TO )2/(202 )}
c=[(/0)]".

A(1)=(V2ro) {@(Tos—tﬂexp i %

The calculation of the characteristic is connected
with the integration of expression (24), which should be
carried out by the numerical method;

6) £()=n(ne)e ™) ;s a(e) = n-(re/(1+11)) .

. (24)

At
Mg Eiﬁ:kt—ln(ukt).
1+t 01+o

t
Then A(t) = J.k
0

Using expression (20), we obtain
() (t) =\ (t) X
n(l

xexp[ -A(1)] [k(t)— In(1 +k(r))}k_1 /(k—l)! . (25)

k=1

Consider a mathematical model of the failure flow
with a finite number of instantaneous incomplete
recoveries.

Above was introduced the concept of a complex
recovery process. It is characterized by different
densities of the distribution of the values of the
operation before the first and between subsequent

failures fi_; 4 (¢), k=1,2,...,n(). The density of the

distribution of operation to k -th incomplete recovery is
characterized by k -th convolution

S0 = foa (O fia (%% fii (0).

In turn, the failure flow parameter for instantaneous
incomplete recoveries is found by the ratio

o3 <r>=§fé”<r>.

Note that when predicting the component failure
flow parameter of a certain circuit position, different
variants of the description of the distribution density

(26)

Si—1k (¢) are possible. They are determined by the

nature of the recoveries of the defective component, the
replacement strategy and other factors.
Thus, the operating time of a certain schematic

position before the first failure f; (¢) can be distributed

according to the normal law, and between failures —
according to the Weibull distribution. Or the operating
time before the first failure and between subsequent
failures obey to a normal distribution with different
values of mathematical expectation and standard

deviation. If the operating time of the circuit position
before the first failure and between subsequent failures
obey the normal distribution with the parameters 7; and

c;, then the density of time distributions to the & -th
failure will look like

-1/2
) (0)=(2x2 %)

conl-(i-ZLr) 22t}

The derivation of expression (27) is based on the
fact that the sum of normally distributed random
variables obey to the normal distribution. Then the
failure flow parameter with a finite number of
instantaneous incomplete recoveries has the form
described by the model of a complex recovery process:

o (1) = ’ﬁ)(znz; ) x

k=1 (28)

NI

From expression (28) we can obtain ratios for
simple and general recovery processes as individual
cases of complex.

If the operating time of a certain circuit position
before the first failure and between subsequent failures
are described by an exponential law with parameters
A;, then the density distribution of the operating time

27)

k -th failure is a generalized Erlang's law of the £ -th
order

10 =0
k k k
[Tr X exp(-2e)/ TT (2j=2)-

=l j=l 1=1(1=j)

(29)

Then the failure flow parameter with a finite
number of instantaneous incomplete recoveries has the
form

n(t)
o) (1) = > (1)
k k ) k (30)
kaiZexp(—kjt) I1 (x_,-—x,).
=1 j=1 1=1(1=f)

Now we present models of failure flow of the
circuit position with a limited number of finite duration
recoveries. First, consider a mathematical model of the
failure flow with a limited number of complete
recoveries of finite duration.

There are the following dependencies for the
failures flow of the circuit position, the duration
recovery of which can not be neglected (Fig. 1):

&1 & n2 &n
! } } —_— —OO———
X1 X, Xn

Fig. 1. Alternating process of failures (recoveries)
with a limited number of recoveries
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k2 .
Zi=1c X] =i], Xz =i]+i2 +Nseees l=1,2,...,7’l,

i i—l !
X; =&+ n , thatis X; =D (& +n;),

I=1 I=1 I=1
where ny =0, n; is duration of / -th full recovery.

The values &; and m; are assumed by independent
random  variables  with  distribution  functions
F(t)=P(& <t) and  G(t)=P(n;<t)  with
mathematical expectation 7,,, 7, and standard deviation
6;, o, with continuous densities of distribution of
quantities f'(¢)=F'(¢) and g(t)=G"(¢).

The process defined in this way is called the

recovery process with a final recovery time. You can
write the following distribution functions for this process:

Fk(’)zp{iiiﬂ}; Gk(t)=P{ini<t};

O, (1)=P{X; <t}
and their distribution density
Se(0)=Fi (1) 5 g (1) =G (1) o () =P (1)
These distribution functions are determined by the
original laws F(¢) and G(¢) as follows

B ()= [ At (1-3)dF (x). F (0)= F(0).

Gt (1)=[Gos (1-3)dG (x). (1)~ F (1),
0 (1) [ i (1-2)dG ().

Then the failure flow parameter of the circuit
position with a finite number of complete non-
instantaneous recoveries can be written as

€2y
k=l
We extend this result to the process of failure of
the circuit position with a limited number of minimum
recoveries of finite duration.
The failure flow of this process is characterized by

the density distribution of a random variable Zf:] &

k-1
Po-B0

and the flow of recoveries by the density distribution of
. k ’
arandom variable >~ m; , g (£)=G(¢).
The probability density distribution of a random
variable X, k=1,2,...,n(t) is a convolution

o2 ()= 1D eg (1)

f(1),

Then the required ratio for the failure flow
parameter has the form

n(l) (2)

0, (f)=kZ=1<Pk (1)

(32)

Similarly, it is possible to expand the mathematical
model of the failure flow with the limited number of
complete recoveries for the process of the circuit
position failure with the limited number of incomplete
recoveries of finite duration.

The failures flow of the circuit position with
incomplete recoveries of finite duration is characterized
by the density of distribution of random variables

SPRE) .
ZE_,I- ~f7 (1) and Zni ~gi(t). Then the
i-1 i-1

distribution  density of the random variable

k
X =>(&-m1):mp =0 isa k -multiply convolution:
I=1

(3) (- )
o (1)= 13" (1) 2 (1)
The failures flow (recoveries) parameter of this
process is calculated by the ratio

n(t)
oV ()= e (1).

k=l
The presented rations (20), (26), (31)—~(33) for
calculation of failures flow parameter with limited
number of recoveries of various depth are reduced to
performance of operations of convolution. Convolution
calculations are easy to perform for a limited number of
typical random variable distributions. In the general

case, the use of numerical methods is required.

(33)

The number of recoveries (or failures) n(¢) of

components at a certain circuit position for the
considered operation may be due to technical reasons,
economic feasibility, safety and environmental
performance requirements, the final failure. Below, we

consider the estimation of the boundary number n (t) of

component’s recoveries of a certain circuit position of
AES for the assigned operating time (service life).
Depending on the depth of recovery, the following

options for estimating the value n (t) are possible.

A. The case of complete recovery. It is known
from the recovery theory that the number of failures

n(t) has an asymptotically normal distribution with
mean Mn(t)~1/T, and dispersion Dn(t)zczt/To
during ¢>>7y. The boundary number of failures
(recoveries) can be selected so that

P{n(t)<ny}=7v.

At large ¢(¢ >>T;) random variables n(r) have

(34)

an approximately normal distribution. Then for n; you

can take the value ny =1/T, +u,_y\102 t/ T3, where

u;_, 1s the quantile of normal distribution.
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For small ¢(¢>Ty), or t<T, the boundary

number of failures can be found from condition (34) by
the method of convolutions. To do this, it is necessary to
consistently find the function of the distribution of
operating time to the first, second and largest number of
failures to fulfill the condition (34)

B) The case of incomplete and minimal recoveries.
We can assume that the function of distribution of
operating time before failure belongs to the class of IIF-

distributions. Recall that the distribution function F (¢)
is called [IIF-distribution, if the probability
F(t+x) / F(t) at an arbitrary constant x>0 decreases

monotonically by #,0<?¢<oo. The affiliation of the
distribution function to the class of IIF-distributions is
equivalent to the fact that the failure flow increases
monotonically. Hence the name of the distribution class
with an increasing failure intensity function.

It is known from the theory of recovery [7] that if
the operating distribution function belongs to the class
of IIF-distributions and has a mathematical expectation
Ty, then

"C (/).
0): —4/T;
P < 0 .
{n(t)<n0} ZTe ,t<Ty (3%5)
i=0

The estimate (35) is convenient for performing
calculations, because to use it it is enough to know the
mathematical expectation 7). Another estimate for

t > 0 IIF-distributions is the following [7]:

P{n(t)<ny}< noz_ll([\(.—f))ie_/\(’),t >0.

Since for each distribution function from the IIF
class there is an inequality A(¢)<#/Ty for 1<Ty,

inequality (36) is a more precise boundary than (35).
However, this requires an estimate of the mathematical

expectation of the number of failures A (7).

Thus, to estimate the boundary number of failures
(recoveries) due to the final failure of the corresponding
component with a given probability v , it is necessary to

solve inequality (34) or (36) with respect to .

Conclusions

1. Mathematical models of the failures flow of
circuit positions with an unlimited number of recoveries
(non-instantaneous and finite duration) at different
depths of resource recovery are considered. It is shown
that the failure flow models with complete or minimal
recoveries follow from the model with incomplete
recoveries as separate cases. A generalization of the
known mathematical models of the failure flow of
components with an unlimited number of minimal
recoveries of finite duration is obtained.

2. Mathematical models of the failures flow of
components of circuit positions with a finite number of
recoveries (non-instantaneous and finite duration) of
different depth during the assigned service life are
considered. The expediency of their use in calculating
the residual life of components and functional units of
AES is shown.

3. The reliability of the developed mathematical
models of failure flows of the AES components is
confirmed by the correctness of the performed

p (36)  transformations, the coincidence of partial solutions
i=0 ’ with the known results.
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MaremMaTH4Hi MoJeJIi MOTOKY BiIMOB KOMILIEKTYIOUHX BHPOOiB pPajioe/IeKTPOHHOI CHCTEMH JIiTaKa
C. B. T'aeBcokmit, C.I. XmeneBcokuid, A. B. Boiiko, T. 0. Mumienko, O. O. TiMmouko

Anotanis. IIpegmMeTom BHBYEHHS B CTATTI € NpoLecH (YHKIIIOHYBaHHS PaiOeJICKTPOHHOI CUCTEMHU Cy4acHOro JIiTaKa,
i1 KOMIUIEKTYIOUMX E€JIEMEHTIB Ta ()YHKI[IOHAJIBHUX BY3JIB SIK 00’€KTa MaTeMaTH4YHOIO MOJCIIOBaHHS. MeTO0 € IpOBEICHHS
aHaJli3y ICHyI04Oro MaTeMaTHYHOr'O anapary, 10 3aCTOCOBYEThCS ISl PO3PAXyHKY ITOTOKY BiZIMOB Ta HMOBIPHOCTI 6€3BiZIMOBHOI
PpoOOTH PaioeNeKTPOHHOI CUCTEMH JIiTaKa Ta MOMKJIMBOCTI HOr0 BIOCKOHAJICHHS. 3aBJaHHS: TOOYyIyBaTH MaTeMaTHIHI MO
MOTOKY BIiZIMOB KOMIUICKTYIOUMX BHMpPOOiB, (YHKIIOHAJIbHUX BY3JiB Ta paJiOCIEKTPOHHOI CHCTEMM JliTaka B IIOMY 3
HEOOMEIKEHHM YHCJIOM BiJHOBICHb IIPU Pi3HIH I7IMOMHI BIAHOBIEHHS pecypcy. AHajii30BaHMMHM METOJAMH €: [apaMeTpUYHI
METOIM Ta IMOBIPHICHI METOAM OLIHKK Oe3BiMOBHOCTI podoTr. OTprMaHi Taki pe3yabTaTH. Po3pobieni MaremaTiysi Mozei
IIOTOKY BIiIMOB CXEMHHX IIO3MILIH pPajiOeNIeKTPOHHOI cHCTeMM Jiitaka. BucHoBkH. B pesynbraTi posrismy MaTeMaTUYHHX
MozieNIel TOTOKY BiZIMOB CXeMHMX IO3HULIH PaioeNeKTPOHHOI CUCTEMH JIiTaKa OTPUMAaHO y3araJlbHeHHs BIJIOMUX MaTeMaTUYHUX
MozieIeli TOTOKY BiZIMOB IIpH HEOOMEKeHiH KUIBKOCT] MiHIMaJIBHUX BiJIHOBJIEHb KiHLIEBOI TPUBAJIOCTI.

Kaw4yoBi ciooBa: 3amumkoBHil pecype; JliTak; MaTeMaTHYHA MOJENb; MOTIK BiIMOB; PaiOeJEKTPOHHA CHCTEMa;
TEXHIYHMNA CTaH; CXEMHA IO3MIIIS.

MaremaTH4YecKHe MOJ€eJIH MOTOKA 0TKA30B KOMIUIEKTYIOIIUX H3/IeJIHii PaiH03IeKTPOHHON CHCTEMBI camMoJIeTa
C. B. I'aeBckutii, C. I. Xmenesckuii, A. B. boiiko, T. FO. Mumenko, A. A. Tumouko

AnHoTanus. IlpeamMerom M3ydeHUs B CTaThe SIBIAIOTCS IPOLECCHl (HYHKIIMOHUPOBAHUS PAJMONICKTPOHHON CHCTEMBbI
COBPEMEHHOI'0 CaMoJIeTa, €€ KOMIUICKTYIOIIMX 3JIEMEHTOB U (YHKLIMOHAIBHBIX Y3JIOB KaK OOBEKTa MAarTeMaTHYecKOro
MozenupoBaHus. Llesiblo sSBISIeTCS aHaIU3 CYIIECTBYIOIIEr0 MaTeMAaTHYECKOro anmapara, MpUMEHsAeMOro Ul pacyera MOTOKa
OTKa30B U BEPOATHOCTH 0E30TKa3HOH paboThl paJIi03IEKTPOHHOM CHCTEMbI CaMOJIeTa U BO3MOXXHOCTH €0 COBEPIICHCTBOBAHUS.
3agayM: [OCTPOMTH MaTEeMaTHYeCKHe MOJENH MOTOKA OTKA30B KOMIUIEKTYIOIIMX M3AENMHH, (YHKUHOHAIBHBIX Y3JIOB U
PaAMOIEKTPOHHON CHCTEMbI CaMOJIETa B IIEJIOM C HEOIPaHHUYEHHBIM YHCIIOM OOHOBJICHMI NPH Pa3HON IyOMHE BOCCTAHOBICHHS
pecypca. AHANM3UPYEeMbIMU METOIAMH SIBILIIOTCS: MapaMETPUYECKUe METOIbl U BEPOSTHOCTHBIE METO/bl OLICHKH 0€30TKa3HOCTH
pabortbl. Ilomydens! cnemyronue pe3yJbTarbl. Pa3spaboTaHHble MaTeMaTHUeCKHe MOJENIHM IO0TOKA OTKAa30B CXEMHbBIX ITO3HLMI
PaaMOIEKTPOHHON cucTeMbl camoreTa. BeiBoabl. [Tonydeno o6o0ieHne U3BECTHBIX MaTEMAaTHYECKUX MOJENIeH MOTOKa OTKa30B
KOMIUICKTYIOIIMX U3/IeIHii IIPH HEOrPAHUYEHHOM KOJIMYECTBE MUHUMAJIBHBIX OOHOBJICHUH KOHEUHON [UTUTEIIBHOCTH.

Kamo4ueBble cjoBa: OCTAaTOYHBIN pecypce; caMoOJI€T, MaTeMaTUYCCKass MOJCIJIb; IIOTOK OTKa30B; PAaJAHODJICKTPOHHASA
CUCTEMA,; TCXHUYCCKOC COCTOAHHUE, CXEMHAas IMO3HUIHS.
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