ISSN 2522-9052

CyuacHi iHpopmariiiai cucremu. 2020. T. 4, Ne 1

Methods of information systems protection

UDC 004.05

V. Pevnev, O. Popovichenko, Ya. Tsokota

doi: 10.20998/2522-9052.2020.1.18

National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine

WEB APPLICATION PROTECTION TECHNOLOGIES

Abstract. The subject matter of the article is the vulnerabilities that there are in web applications. The goal is to ana-
lyze the problem of violation of information security of web applications. The tasks to be solved are: view statistics on
web attacks on web applications; identify the main prerequisites for cyber-attacks; considered the most common types
of vulnerabilities; suggest ways to create a secure application. The methods used are: analytical method, literature
analysis, description. The following results were obtained: For each given type of vulnerability, a scenario of a possible
attack by an attacker was considered. There were also suggested ways for developers to use these vulnerabilities and
develop a secure web application. Conclusions. Keep in mind that the best protection for web applications is writing
safe code. Developers who implement applications should be aware in advance of the existence of common types of at-
tacks and how they work in order to protect applications and prevent possible cyber-attacks. It is best to use security
methods comprehensively to protect your web application as much as possible.

Keywords: web application; vulnerability; attack; web applications protection; secure application.

Introduction

Today, information technology (IT) is becoming
more and more common in society. They are used in a
wide variety of industries: social networks, email, news
and government portals, electronic commerce, forums,
blogs and other websites. Along with the development
of IT, information security (IS) is becoming increas-
ingly important. If we consider the historical perspective
of the development of IS, it turns out that since 1996,
when the Constitution of our state was adopted, until the
moment of writing this work, the number of people who
feel protected in the information field constantly falling.
The point is not only in the avalanche-like growth in the
use of IT, and most likely in the violations that the state
makes in the information sphere. The growing require-
ments for providing IS are determined, first of all, by
the development of IT. Potential violators have new
opportunities for destructive actions in all areas of our
lives. The most effective of these actions occur in cy-
berspace. Based on the foregoing, we can conclude the
need to protect web applications.

Formulation of the problem. Depending on
where the web application is used, information of dif-
ferent access levels and values can be processed in it.
For example, applications can use information about
bank cards, personal data of users, passwords and other
identification data. No user is immune from the fact that
his data can be copied or subjected to a number of influ-
ences of an accidental and malicious nature in the process
of its processing, transmission and storage. Therefore, it
is important for developers to provide IS for users.

All these listed resources can be implemented us-
ing web applications, which are a “client-server” archi-
tecture. In this concept (see Fig. 1), the client is the us-
er's browser and the server is the web server. At the
heart of the “client-server” concept, information is ex-
changed over the network, the client starts interacting
and data is stored primarily on the server.

Basically, web applications have a distributed
structure. The main advantages of this structure:

DWOJ

I:' a Server

Fig. 1. The concept of “client-server”

— good scalability — the ability to increase func-
tionality without changing the structure;

— the availability of the ability to manage the load
of the application - redirecting user request flows to
less loaded servers [1].

The typical architecture of these applications can
be represented in three levels: the client part (web
browser), web server, data (DB) (Fig. 2).

Analysis of recent research. Every day, any web-
site may be exposed to cyber attacks. Typically, most
attacks are targeted. This means that the intruder is not
limited to a single attempt to obtain the necessary data
in an unauthorized way, since he does not know exactly
which vulnerabilities are in the code. All attempts to
hack a site add up to a series of events that occur over a
certain period of time.

According to statistics for 2018, the largest num-
ber of attacks on one web application falls to the web-
sites of financial organizations, transport companies and
service companies (see Table 1) [2].

The choice of attack method depends on the fea-
tures of the web application. Suppose, if the application
does not provide the ability to enter user data, then the
attacker will not conduct attacks aimed at changing the
logic of the application through user input. The most
popular attacks include: injecting SQL code, going out-
side the directory and cross-site scripting (Table 2).

© Pevnev V., Popovichenko O., Tsokota Ya., 2020

119

Advanced Information Systems. 2020. Vol. 4, No. 1

ISSN 2522-9052

Users

HTTP requests and responses

Web server

Presentation layer |

Application layer |

Data layer |

XML or JSON

SQL

Database

Web
services

Fig. 2. Distributed web application architecture

Table 1 — Average number of targeted attacks
per day per web application

The scope of the site Number of attacks
Financial organizations 151
Transport companies 135
Services sector 114
IT companies 87
State institutions 86
Education and science 57

Table 2 — Most popular attacks

Type of attack Percentage ratio
SQL Injection 27 %
Path Traversal 17 %
Cross-Site Scripting 14 %
Local File Inclusion 11 %
Information Leakage 8 %
OS Commanding 7%
Brute Force 5%
Remote Code Execution 2 %
Denial of Service 2 %
Server-Side Template Injection 1 %
Other 6 %

The purpose of the article is to consider the most
common vulnerabilities in web applications and develop
possible ways to create secure web applications.

Research results

Most often, web applications are attacked because
vulnerabilities are present in the application code [3].
Consider the most popular types of vulnerabilities pre-
sent in web applications and find out what may be at-
tacks on such applications.

The first category includes code problems associ-
ated with an unverified conversion and redirect. In such
cases, an attacker tricks users into a dangerous site by
manipulating the URL of a real site. Redirection typi-
cally uses the query string parameter returnUrl [4].

Example of an attack: first, the attacker assures the user
to click on the link to the page of the source site for au-
thorization, while he adds the value of the query string
returnUrl to the URL.

Consider the web application on test.com with the
login page http://test.com/Log-in?returnUrl=/Home/. After
manipulating the value of the query string, the user
clicks on the second URL testl.com, not test.com.
Successfully logs in to your account. The site redirects
the user to http:/testl.com/Log-in (a malicious site that
looks like a real one). The user logs in again, providing
the malicious site with their credentials, and is
redirected again to the real site. With such actions, the
user might think that he was unable to log in the first
time, not suspecting that his credentials were
compromised. To protect the application from this at-
tack it is necessary: during development, assume that all
provided user data does not inspire confidence. If the
web application contains functions that redirect users
based on the contents of the URL, then redirection can
only be implemented locally in the application or
strictly behind a known URL, and not to any address in
the query string. The second type of attack is the inter-
working of the request. In this case, the attacker exploits
the flaws of the HTTP protocol. When a browser opens
a page, malicious code is executed. It forces the user to
send a specific request to the attacker's server. As a
result, some actions are performed that are necessary for
the attacker. An example of such an attack: suppose
there is a fictional bank “Some bank”. It has a page for
sending cash payments to a specific account number.
The request can look like this:

http://www.somebank.com/bank/transfer.aspx?creditAccount=
1001160141&transferAmount=1000.

If the attacker found this link, then he can send a
letter to the user, where he will first post the necessary
link to his site (Fig. 3) [S]. For example, the letter will
look like:

“Good afternoon, Some bank user!

Recently, we have implemented on our server sev-
eral security improvements that require confirmation of
your account. Use the following /ink.”

In this case, when the user clicks on the link, he
goes to the site and receives, for example, a message
stating that an amount of $1000 was transferred to ac-
count 1001160141.

When the user goes to this page, no action is re-
quired from he, since the form is automatically submit-
ted when the URL is loaded.

There is the following way to protect the applica-
tion using the referer header. Since most browsers tell
the server which page the request was sent from, it is
possible to reject the request on the server if the referer
does not match the host domain name (Fig. 4).

Another popular type of vulnerability is the lack of
access control. This means that high-level functionality
is hidden from low-level functionality instead of making
changes using access control [6]. Therefore, an attacker
who acts as a low-level user can gain access, for exam-
ple, to the web application administration interface. An
example of an attack would be this: an application uses
data in an SQL call that is not verified.

120

ISSN 2522-9052

CyuacHi iHpopmariiiai cucremu. 2020. T. 4, Ne 1

<html>

</form>

</body>

<body onlLoad="document.getElementById('transferForm').submit()">
<form id="transferForm" action="http://www.somebank.com/bank/transfer.aspx" method="post">

<input type="hidden" name="creditAccount" value="1001160141">
<input type="hidden" name="transferAmount" value="10">

Fig. 3. Example code of an attacker page

If(request.getHeaders("referer") != null

&& request.getHeaders("referer") .index0f(
"http://www.somebank.com") != 0){
throw new Exception("Invalid referer");

3

Fig. 4. Example use of referer

Calling access to user account information:

pstmt.setString(1, request.getParameter("acct"));

ResultSet results = pstmt.executeQuery();

The attacker changes the "acct" parameter to send
the desired account number:

http://example.com/accountinfo?acct=notmyacc

Without the necessary verification, an attacker
could gain access to an account.

To prevent such an attack, you must first deny ac-
cess by default, except for open resources. Access con-
trol features should be implemented and cross-domain
resource usage should be minimized. And also limit the
frequency of access to the API and controllers.

Unprotected direct object references are also a
common drawback of web applications. This allows an
attacker to obtain data from a server by manipulating
file names. An example of an attack: imagine that there
is an image that the hacker cannot access on the server,
but who wants to hack and which is published via a
URL similar to this https://example.net/photos/774.jpg.
A generic HTTP request has the form:

GET /photos/774.jpg HTTP / 1.1
Host: example.net

After logging into your account, the attacker can
edit his personal images with a special URL in combi-
nation with the session cookie, for example:

https://example.net/api/edit/?image=48.jpg

HTTP request generated:

GET /api/edit/?image=48.jpg

Host: example.net

Cookie: authtoken = HRCALAGJEOWRGTMW

In this example, authtoken is a session cookie that
tells the server that it is a user and that he is authenticat-
ed. But in the case that the server only checks the
authtoken and does not check the name of the image on
the account, then it is indeed allowed to edit this image.
Then the attacker can reproduce the necessary request
with the forbidden image of the file name in it, for ex-
ample:

https://example.net/api/edit/?image=774.jpg

HTTP request:

GET /api/edit/?image=774.jpg

Host: example.net
Cookie: authtoken = HRCALAGJEOWRGTMW

In this case, it is necessary to check access to the
use of direct object links from an unknown source, and
it is also necessary to use only one user or one session
for indirect references to objects [7].

One of the most popular types of vulnerabilities is
cross-site scripting. This application defect allows at-
tackers to insert JavaScript code on the pages of real
sites. By doing so, they can replace the entire contents
of the website in order to gain unauthorized access to
user credentials. Example of a possible scenario: the
developed application uses unverified data when gener-
ating HTML code without converting it. Let's say in this
line of code:

(String) page +="" + request.getParameter("CC") + "";
An attacker can change the ‘CC’ parameter to:
<script>
document.location = 'http://www.attacker.com/cgi-
bin/cookie.cgi?
foo="+document.cookie
</script>

As a result, the user session identifier is sent to the
attacker's site, allowing the attacker to intercept the vic-
tim’s current session [8].

To prevent such attacks, you need to separate un-
verified data from the active content of the browser.
First, you need to use frameworks with automatic data
conversion (such as ReactJS or Vue.js). Secondly, it is
necessary to apply context coding when changing a
document in the user's browser to prevent cross-site
scripting on the DOM.

A very common vulnerability in many web appli-
cations is authentication weaknesses. In this case, the
attackers have access to combinations of names and
passwords for attacks on accounts, lists of standard ad-
ministrator credentials and dictionary attacks. For ex-
ample, password authentication is not a reliable way to
protect personal data, as users tend to choose simple
passwords and the same passwords in different systems.
In this case, the developer should not allow users to
create simple passwords, do not allow passwords to be
transmitted over an insecure HTTP connection or in the
address bar, and should not allow session tokens to be
transmitted over an insecure HTTP connection or in the
URL bar. And also, allow users to change the password
and notify them about changing the password, use se-
cure hash functions to store passwords, and require re-
authentication after important actions, such as changing
the password, changing confidential information [9].

121

Advanced Information Systems. 2020. Vol. 4, No. 1

ISSN 2522-9052

Finally, the most popular type of attack is injec-
tion. Injections allow hackers to change the server
command request through unauthorized user input.
Such implementations can lead to data loss or data
corruption, and can also be used for the interests of
third parties. Such consequences occur if the data en-
tered by the user is not checked, not filtered or
cleared. If non-parameterized calls without
contextual screening are directly used in the
interpreter. Injection example: an application
uses untrusted data when creating the next
vulnerable SQL call. For instance:

String query = "SELECT * FROM accounts
WHERE custID="" + re-
quest.getParameter("id") + "".

In this case, the attacker changes the
value of the "id" parameter in his browser to
send 'or' 1 '=' 1. For instance:

http://example.com/app/accountView?id="or '1'="1

Modifying the query allows you to get all
the entries from the credential table. More
serious attacks allow you to modify or delete
data, as well as call stored procedures [10].

In order to detect vulnerabilities in the
code and understand how the system will
respond to the attack — the application needs to
be tested. The testing process is as similar as possible to
the hacking process that an attacker conducts. The
purpose of such actions is to determine how vulnerable
the web application is [12].

According to the source [13], the most popular
testing methodologies are:

— the Open Source Security Testing Methodol-
ogy Manual,;

— the National Institute of Standards and Tech-
nology (NIST) Special Publication 800-115;

— OWASP Testing Guide;

— Penetration Testing Execution Standard,

— Information Systems Security Assessment
Framework.

To test the security of web applications, it is more
appropriate to use the OWASP methodology. This

Configuration

Tools/software

methodology is based on the black box method — infor-
mation about the tested application is limited or absent
at all [14].

Software security covers a very wide area of sub-
jects. To have a secure software application you have to
consider many things. Here is a little diagram (Fig. 5)

Best practices

e Locks +Firewalls

* Security
access

*Routers
*Wireless
*Proxies

network
security

office
security

Hardware

server
security

*Anti virus

*Visiting dodgy

e Linux
e Windows

websites
*Infected usb o
«Windows login application

security

*SSL
eApache/nginx

*+PHP/Python/MySql
*The code you write

Standards

Fig. 5. Web security layered approach

what illustrate different areas of security, what they
cover, and what needs to be considered [15-17].

Conclusions

This article discusses some types of vulnerabilities
in web applications and possible attacks using them.
The proposed defense methods are based on creating
secure code. Developers who implement applications
should use their best efforts to study proven types of
attacks. In addition, as preventive measures to ensure
the IS of the developed applications, it is necessary to
predict likely attacks on the web application. In addi-
tion, it is necessary to use an integrated approach to the
creation of an information security system, which
should combine measures to ensure confidentiality, ac-
cessibility and integrity of information.

REFERENCES

1. Markov, E. (2019), Distributed Application Architecture [online], available at:
https://www.itweek.ru/infrastructure/article/detail.php?ID=66147

2. Ptsecurity.com (2019), Attacks on web applications: results of 2018 [online], available at:
https://www.ptsecurity.com/ru-ru/research/analytics/web-application-attacks-2019

3. Habr.com (2015), 10 attacks on web applications in action. [online], available at:

https://habr.com/ru/company/ua-hosting/blog/272205

4. Docs.microsoft.com (2017), Prevention of open redirect attacks in ASP.NET Core [online], available at:
https://docs.microsoft.com/ru-ru/aspnet/core/security/preventing-open-redirects?view=aspnetcore3. 1

5. lonescu, P. (2014). Prevention of falsification of cross-site requests: latent danger on browser tabs [online], available at:
https://www.ibm.com/developerworks/ru/library/se-appscan-detect-csrf-xsrf/index.html

6. Habr.com (2014), Speedran for 13 vulnerabilities on sites. Basic concepts and means of protection [online], available at:

https://habr.com/ru/post/226321

7. Cadelta.ru (2019), The best solutions for protecting sites and web-applications [online], available at:

https://cadelta.ru/security/id3369

8. Hackware.ru (2018), Lesson 1. The basics of XSS and the search for sites vulnerable to XSS [online], available at:

https://hackware.ru/?p=1174

9. Habr.com (2015), Overview of authentication methods and protocols in web applications [online], available at:

https://habr.com/ru/company/dataart/blog/262817/.

122

ISSN 2522-9052 CyuacHi indopmaniiini cucremu. 2020. T. 4, Ne 1

10. Nalivaiko, A. (2017). How to protect a web application: basic tips, tools, useful links [online], available at:
https://tproger.ru/translations/webapp-security

11. Owasp.org (2017), The ten most critical threats to the security of web applications [online], available at:
https://www.owasp.org/images/9/96/OWASP Top 10-2017-ru.pdf

12. Kalchenko, V. (2019), “Analysis of the existing methodology for conducting computer system security audits in government
agencies”, Control, navigation and communication systems, 3(55), pp. 110-114.

13. Kalchenko, V. (2018), “An overview of penetration testing methods for assessing the security of computer systems”, Control,
navigation and communication systems, 50, pp. 109-114.

14. Owasp.org (2017), The ten most critical threats to the security of web applications [online], available at:
https://www.owasp.org/images/9/96/OWASP_Top_10-2017-ru.pdf

15. Svyrydov, A., Kuchuk, H., Tsiapa, O. (2018), “Improving efficienty of image recognition process: Approach and case study”,
Proceedings of 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies, DESSERT
2018, pp. 593-597, DOI: http://dx.doi.org/10.1109/DESSERT.2018.8409201

16. Mozhaev, O., Kuchuk H., Kuchuk, N., Mozhaev, M. and Lohvynenko M. (2017), “Multiservise network security metric”,
IEEE Advanced information and communication technologies-2017, Proc. of the 2th Int. Conf, Lviv, pp. 133-136, DOI:
https://doi.org/10.1109/ATACT.2017.8020083

17. Nalivaiko, A. (2017). How to protect a web application: basic tips, tools, useful links. [online], available at:
https://tproger.ru/translations/webapp-security/.

Received (Hanmiva) 14.12.2019
Accepted for publication (ITpuitasiTa mo apyky) 12.02.2020

BI1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

ITeBHeB Bosomumup SIKOBJIEeBHY — KaHIUAAT TEXHIYHUX HAyK, DOLEHT, TOLEHT Ka(eapy KOMII IOTEPHHX CHUCTEM, MEPEeXK Ta
kibepbOesneku, Hanionansuuii aepoxkocMiunuii yHiBepeureT iMeHi M.€E. XKykoBcebkoro «XAl», Xapkis, Ykpaina;
Volodymyr Pevnev— Candidate of Technical Science, Associate Professor, Associate Professor of Computer Systems, Net-
works and Cyber security Department, National Aviation University “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: v.pevnev@csn.khai.edu; ORCID ID: http://orcid.org/0000-0002-3949-3514.

ITonoBivenko Oxkcana MukosaiBHa — CTyJeHTKa Kade[pu KOMII FOTEPHHX CHCTEM, Mepex Ta KibepOesneku, Harionansauii
aepokocMiunui yHiBepcurer iMeHi M.€. JKykoBcbkoro «XAl», Xapkis, YkpaiHa;
Oksana Popovichenko — Student of Computer Systems, Networks and Cyber security Department, National Aviation Uni-
versity “Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: o.popovichenko@student.csn.khai.edu; ORCID ID: https://orcid.org/0000-0002-2083-0314.

Hoxora fpocaas BiranilioBuy — cTyneHT kadeapyu KOMII FOTEPHUX CHCTEM, Mepex Ta KibepOesneku, Hanionanbauii aepoko-
cMivynuit yHiBepeuteT imeHi M.€E. XKykoscbkoro «XAl», Xapkis, YkpaiHa;
Yaroslav Tsokota — Student of Computer Systems, Networks and Cyber security Department, National Aviation University
“Kharkiv Aviation Institute”, Kharkiv, Ukraine;
e-mail: y.tsokota@student.csn.khai.edu; ORCID ID: https://orcid.org/0000-0001-6155-817X.

TexHoJI0Tii 3aXMCTy Be0-3aCTOCYHKIB
B. 4. IleBues, O. M. ITomnoiuenko, £1. B. L{lokora

AnoTtanis. [Ipexverom BHBUCHHS B CTaTTi € Ypa3IHMBOCTI, sIKi IPUCYTHI y BeO-3acTocyHKax. MeTol0 € NOoCIIiKEeHHS IIpo-
Onemu mopymeHHs iHopMamiiiHoi Oe3rmexn BeO-3aCTOCYHKIB. 3aBHaHHSI: O3HAMOMHTBCS 31 CTATUCTHKOIO BeO-aTak Ha BeO-
3aCTOCYHKH; BUSIBUTH OCHOBHI IEPElyMOBH JI0 KiOepaTak; pO3IJISIHyTH TUIIN YPa3JIUBOCTI, sIKi 3yCTPiYaroThCsl HAlyacTille; 3arpo-
MOHYBATH CIOCOOM CTBOPEHHS OE3MEYHOr0 3aCTOCYHKY. BUKOPHCTOBYBAHMMH METOAMM €: aHAJITHYHUI METOJ, aHall3 JiTepa-
TypH, onuc. OTpuMaHi HACTYNHI pe3yabTaTH. [0 KOXKHOrO HaBEACHOIO BUIY YPa3JIUBOCTI OyB POIIISHYTHIl CLieHapiid MOXIMBOL
aTaku 3 OOKy 3JI0BMHCHHUKA. Takoxk OyIu 3aIIpOIIOHOBaHI METO/M JUIsl PO3POOHHUKIB, SIKi JO3BOJIAIOTH YTHII3yBATH JIaHi ypa3InBOCTi
Ta po3pobutn Ge3neynnii BeO-3acTocyHoK. BucnoBku. HeoOxiiHO mam'sTaTy, o HalKpanyii 3aXUcT Be0-3aCTOCYHKIB — HaIlMCaH-
Hsl Oe3neyHoro kozy. Po3poOHuUKH, sKi peani3yloTh IporpamMu, HOBUHHI OyTH 3a3znaierias noiHGopMoBaHi Ipo iCHyBaHHS MOLIMpE-
HHX THIIIB aTaK Ta PO IPUHLKIK IX poOOTH, Ul TOro 100 pealti3yBaTH 3aXHUCT 3aCTOCYHKIB 1 3a1100irTH MOXIIMBUM KiOepaTakam.
Haiixpairie BUKOPUCTOBYBATH METOJH 3aXHCTY KOMIDIEKCHO, 11100 MAKCUMAJIbHO 3aXUCTUTH BeO-3aCTOCYHOK.

Kaw4doBi caoBa: BC6-33.CTOCYHOK; Bpa?,J'lI/IBiCTB; araka, 3axXucT Be6-3aCTOCYHKiB; Oe3MeyHMi 3aCTOCYHOK.

TexXHOJIOrHH 3aIMTHI BeO-NPHJIOKEHHI
B. 4. IleBues, O. H. ITonoBnuenko, 5. B. [{okora

AnHoTanus. IIpeqrMeToM M3yueHHS B CTaThe SBIAIOTCS YA3BUMOCTH, KOTOPBIE NPUCYTCTBYIOT B BEO-IIPUIIOKCHHSX.
Heabo sBisieTcs uccieloBaHUe MPoOIeMbl HapyIeHUs: HHYOPMALMOHHON 0€30IMacHOCTH BeO-NPUIIOKEHU. 3agaum: 03HAKO-
MHTBCS CO CTATUCTHKOMN Be0-aTak Ha BEO-IIPUIIOJKEHYS; BBISIBUTH OCHOBHBIE IIPEIIOCHUIKH K KHOepaTakaM; pacCMOTpPETh Hanbo-
JIee 4acTO BCTPEYACMbIC THUIIBI YSI3BUMOCTEH; MPEIUIOKHUTH CIIOCOOBI CO3aHUs O€30MacHOro NPHIOKeHHs. MIcronp3yeMbpIMU Me-
TOAAMH SBJISIOTCS: aHAIUTHYECKUI METOJl, aHaJIM3 JINTepaTypsl, onucanue. [lomydeHsl crenyromue pe3yabTarsl. K kaxnpomy
IPUBEICHHOMY BUJy YSI3BUMOCTHU OBbLI PacCMOTPEH CLIEHApHil BO3MOXHOH aTaku CO CTOPOHBI 3JI0yMbIIUICHHUKA. Takxke Oblian
HPEUIOKEHBI CIIOCO0BI 171 pa3pad0TUNKOB, KOTOPbIEC NIO3BOJIIOT YTHIN3HPOBATh JaHHBIE YSI3BUMOCTU M pa3paboraTh Oe3orac-
Hoe BeO-mnpuiioxeHue. BoiBoabl. HeoOX0onMMO OMHUTB, YTO HaWiIydllas 3allluTa BeO-NpHIOKEHUI — HanucaHue 0e30macHoro
koza. Pa3paborunku, peanusyronue IpHIoKeHH!s, JOKHbI ObITh 3apaHee OCBEIOMIICHBI 00 CYIIECTBOBAHUH PACIPOCTPaHEHHBIX
THUIIOB aTaK ¥ 00 NPUHIMNAX UX paboThl, Ul TOr0 YTOObI pealIN30BaTh 3aLIUTY NPHIOKEHUI U IIPEIOTBPATUTh BO3MOXKHbIC K-
Geparaku. Jlydie Bcero HCHONb30BaTh METO/bI 3aIUThl KOMIUIEKCHO, YTOOBI MAKCUMAJIBHO 3aIlUTHTD BEO-IIPUIIOKEHUE.

KawueBblie cioBa: Be6-l'IpI/IJ'lO)KeHI/I€; YA3BUMOCTB, aTaka, 3alura Be6-HpHJ’[O)KeHHﬁ; Oe3omacHoe TIPUITOXKEHUE.

123

