ISSN 2522-9052

CyudacHi inpopmaniiiai cuctemu. 2019. T. 3, Ne 4

UDC 004.056

doi: 10.20998/2522-9052.2019.4.15

I. R. Ragimova', F. A. Gubadova', B. A. Asker-zade', S. S. Pohasii’

' Azerbaijan Technical University, Baku, Azerbaijan

* Simon Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine

JAVASCRIPT SECURITY USING CRYPTOGRAPHIC HASH FUNCTIONS

Abstract. The subject of this research is the development of methods of protection against attacks on third-party
JavaScript and the document object model (DOM). The purpose of the article is to develop an algorithm and determine
the effectiveness of using cryptographic hash functions as one of the methods of protection against attacks on third-party
JavaScript resources. The third-party JavaScript code download chain may consist of three or four third-party websites.
From a security point of view, this creates a risk of attack on a third-party resource. If the attacker compromises one of the
third-party resources, this will affect the entire chain using this resource. Based on these conditions, it is indispensable to
solve the following tasks: to develop a secure algorithm for hash functions for protecting applications in JavaScript, which
will constantly monitor changes that occur on a web page; determine the advantages and disadvantages of the method in
real operating conditions. In the process of the study, the following results were obtained: the problems of writing safe
code in JS were considered, the algorithm for using cryptographic hash functions was proposed, the essence of which is
that the hash is calculated at the first moment of loading a third-party resource. Each time a third-party resource is loaded,
the algorithm calculates its hash and compares it with the value of the first hash. It is established that cryptographic hash
functions on the example of sha384 have the property of an avalanche effect. It is recommended to use this method for web
pages with mission-critical operations, such as payment pages, registration, password reset or account login. Their strengths
and weaknesses were also revealed in the process of improving the JavaScript protection method.

Keywords: JavaScript security; cryptographic hash functions; method of protection against attacks; document object

model.

Introduction

Recently, considerable efforts have been expended
and some successes have been achieved in the process
of developing cryptographic methods for analyzing the
hash function. In this article, we propose a method of
protection against attacks on third-party JavaScript
resources using cryptographic hash functions. Hash
functions are widely used in cryptography, especially in
the construction of digital signature systems and various
cryptographic protocols.

The purpose of the article is to develop an
algorithm and determine the effectiveness of using
cryptographic hash functions as one of the methods of
protection against attacks on third-party JavaScript
resources.

Cryptographic requirements for key and keyless
hash functions arise directly from the conditions of their
use in practice. The main requirement for hash
functions is the uniform distribution of their values with
a random choice of argument values. For cryptographic
hash functions, it is also important that with the
slightest change in the argument, the value of the
function changes strongly (avalanche effect). Despite its
simplicity, the algorithm allows timely prevention of
the use of compromised third-party resources. However,
the method creates additional administrative functions
to support the site, as most modern web sites will
include hundreds of third-party resources.

Literature review. The OWASP TOP 10 Project
document presents a list of the most significant and
critical risks of web applications. The decision to
include vulnerabilities in this list is based on the expert
opinion of cybersecurity experts from around the world.

Implementation of Applications function related to
authentication and session management are often
incorrectly implemented, allowing attackers to

compromise passwords, keys or session tokens, as well
as exploit other implementation errors to temporarily or
permanently intercept user accounts.

The disadvantages of authentication. Many web
applications and APIs have poor protection for critical
data. Confidential data requires additional security
measures, for example, their encryption during storage
or transmission, as well as special precautions when
working with the browser.

XML External Entities (XXE). Older or poorly
configured XML processors process references to
external entities within documents. These entities can
be used to access internal files through file URIs, shared
folders, port scans, remote code execution, and denial
of service.

Disadvantages of access control. The actions
allowed by authenticated users are often incorrectly
controlled. Attackers can take advantage of these
shortcomings and gain unauthorized access to other
users' accounts or confidential information, as well as
change user data or access rights.

Incorrect security settings occur due to the use of
standard security settings, incomplete or specific
settings, open cloud storage, incorrect HTTP headers
and detailed error messages containing critical data.

Cross-site scripting (XSS) occurs when an
application adds unverified data to a new web page
without checking or converting it, or when it refreshes
an open page through a browser API using user-
provided data that contains HTML or JavaScript code.
Using XSS, attackers can execute scripts in the victim’s
browser, allowing them to intercept user sessions, swap
site pages, or redirect users to malicious sites.

Insecure deserialization often leads to remote code
execution. Deserialization errors that do not lead to
remote code execution can be used for attacks with
replay, injection, and privilege escalation [7].

Ragimova L. R., Gubadova F. A., Asker-zade B. A., Pohasii S. S., 2019

105

Advanced Information Systems. 2019. Vol. 3, No. 4

ISSN 2522-9052

Formulation of the problem. To ensure the
safety of JavaScript, it is not easy to track what is
happening when running scripts on JS, but, armed with
suitable tools, you can find and rewrite problem areas
even in the most confusing code.

JavaScript does not stand still: new and new
features appear in it, it is often used to write
applications (both mobile and desktop), and is also
increasingly found on servers (and not only) thanks to
Node.js. And this means that the art of catching bugs
must be taken to a new level.

Statement of the main material

Developing secure JavaScript applications is a
tricky task due to JavaScript features, due to the
following problems of the complexity of writing safe JS
code.

1. The compiler will not help since JavaScript is
an interpreted language. It will not be refusing to work
and pushing you to correct errors and optimize the code.

2. The dynamic essence of JavaScript.
JavaScript is dynamic, weakly typed, and
asynchronous, which confirms that security problems
are inevitable.

3. Intricate features of JS. JavaScript has
prototypes, first class functions, and closures. They
make the language even more dynamic, and writing
safe code is more difficult.

4. Close interaction between JavaScript and the
document object model (DOM). Thanks to the DOM,
web pages loaded into the browser can be updated in
stages during the loading of data from the server.
However, this convenience also has a flip side: the code
fragments that are responsible for the dynamic
interaction between the JS and the DOM are especially
error prone.

5. Complex event interactions. JavaScript is an
event-driven language. Most events are triggered by
user actions. There are those that can be triggered

without it, for example, time events and asynchronous
calls. Each event can be echoed throughout the DOM
tree and activate several “listeners” at once. Sometimes
tracking all of this is a rather non-standard task.

Problem: A web page consists of many different
third-party JavaScript scripts.

The following is an example HTML page with
embedded JavaScript code on external resources (see
Fig. 1).

<html>

<head >

<title>My Site</title>

<script type="text/JavaScript"
src="//se.monetate.net/js/2/a-ec87f2d7entry.js">-
</script>

<script
src="//nexus.ensighten.com/Bootstrap.js"></script>

</head>

<body>

My test website

</body>

</html>

Fig. 1. Algorithm 1

As can be seen, in addition to standard HTML
attributes such as head, body, the Script attribute is also
present. This attribute allows to load third-party code
into an HTML page.

In this example, two third-party JavaScript codes
are loaded into the page.

As can be seen from the example, the third-party
code itself is missing, and instead links to external
resources are indicated. The original code is
downloaded directly from a third-party resource.

Modern web applications use hundreds of links to
third-party JavaScript code.

The Fig. 2 shows a graph that displays the number
of third-party JavaScript resources using a popular
website as an example.

wwtrave\cdgé' 3
Wi ravelodge To

‘#WWI&CEDODK oom Bt
e S

o——
www fravelodge. co.uk

pmteom —w.

==
Wﬂﬁe,m uk

@
S v
www facebook.com wawiTavelodge’ed //.
' /
’Mgo\7a\w s
/
/

joogle-analytics.com

@)

www google-analytics com
Py 9000 L p. rfravelodge.co uk

7 % & ,
h‘avelodge co i \, news.ensighten.com
"ave‘oqge o Dﬂbads g doim!dfwnhdge co.uk / '\\ \ @ 3808619 is doubledick 1
\ vy tratelodge.co.uk /
£2095.E8 repﬁpmg rrav\e\onge d _\ \ /
| d k
i tra) elo eco\uk \ Ww K W & gem véo \\ \] [] i/
. / rapéiodge.co M (s doudflere.com resouroe;xgaken com /‘
/ www.trgvelodge. co,
| \ A}W“]‘”‘m\’ od%cc i 9€.C0 ve\odge couk \ / /
nexus.ensigiy &qgo%, i \ 1 /
q \ om warwirg a\odge co.ul \ \ /
v google-i anal\m com \ fmtnetate.net \ X 0/ nexus.ensighten.com
N\ \ /

odg&@_uwwrrave o

o www fravelodge. co.uk j | \ . [‘.‘\ \ \\\
bubleclick. net ‘ “I uv.u google ana\yn@ﬁg’p. opmnstr.com | \ h°)
\ 2. enme@ﬁ[g
@ wwwf7 apiv 280 m?mgng’am#mdge cc' u ‘ \ \ www travelodge.co.uk redéyerepnmng travelodge co.ul EBghten.com
o/ / wgigpogle- ana\}hcﬁ com
@ @ / léwwtrave\cd e.couk 8"”?4“'3‘/5‘0099 co.uk npxus ensighten.com
4 i travelodge. co.ul ;. 3 nexus.ensighten. com

nexus engighten
T

-9 -@ L -] —e
Wfacebmmelcdge)cggLff"’\\ \ /' se.monetate net {.monetate.net
- = semonetate.net \ /
{
N / F

trave\odge co.uk

) 5
nexus ensighten.com / \ \\ VMOOQ'e‘a"aMC%%Wumqodo.cp.‘

Fig. 2. The hash is calculated at the first moment of loading a third-party resource

106

ISSN 2522-9052

CyudacHi inpopmaniiiai cuctemu. 2019. T. 3, Ne 4

The central vertex of the graph represents the main
website, and the vertices coming from it represent third-
party JavaScript resources.

As can be seen, the third-party JavaScript code
loading chain can consist of three or four third-party
websites. From a security point of view, this creates a
risk of attack on a third-party resource. If the attacker
compromises one of the third-party resources, this will
affect the entire chain using this resource.

Below is an example of an html page where, along
with a link to a third-party JavaScript resource, the
corresponding hash is also shown (see Fig. 3).

The number of third-party JavaScript resources

Each time a third-party resource is loaded, the
algorithm calculates its hash and compares it with
the value of the first hash.

At the slightest change in the external resource,
the algorithm will calculate a new hash and detect
the difference with the value of the first hash.

Cryptographic hash functions have the property
of an avalanche effect. That is, a change in one bit of
data will affect a complete change in the hash
function. This mismatch will cause a failure to load a
third-party resource.

<script src="https.//example.com/example-
framework.js"

integrity="sha384-Li9vy3DqF8tn
TXuiaAJuML3ky+er1 OrcgNR/VqsV pcw+ThHm Ycwi

B1pbOxEbzJr7"

crossorigin="anonymous"></script>

The following is an example of an avalanche effect
with a hash function sha384

sha384(test)=

768412320f7b0aab812fce428dc4706b3cae50e02ab
4caa16a782249bfe8efc4b7ef1c
cb126255d196047dfedf17a0a9
sha384(Test)=

7B8F4654076B80EB963911F19CFAD1AAF4285ED
48E826F6CDE1B01A79AA73FADB5446
E667FC4F90417782C91270540F3

Fig. 3. Example of an html page

In the above example, we use the integrity
attribute, which contains the hash value itself.
In this example, this is a hash function sha384.

Program algorithm

1. Insert a link to a third-party resource in the
page.

2. Follow the external link.

3. Calculate the hash of a third-party resource.

4. Check if the hash value corresponding to this
third-party resource is identical.

5. If no, value is missing, then place the calculated
value into the database.

6. If the value exists, but not identical to the value
just calculated, then refuse to load a third-party
resource.

7. Display loading error information in the
browser console.

Strengths and weaknesses
of this approach

Weaknesses: This method is reactive, i.e.
leaves little time for site administrators to make
decisions in case of legitimate changes in third-party
code.

The method will create a lot of false positives
on dynamic pages, since the content in them is
changes frequently.

Strengths: This method is suitable for web pages
with critical operations, such as payment pages,
registration, password reset or account login. Pages
with these types of operations are of most interest to the
attacker.

Conclusions

The use of this method will constantly monitor
changes occurring on the web page. If one bit
changes on any of the resources, the program will
detect and warn about an attempt to change the state
of the system.

Thus, the timely detection of unauthorized
changes and leaving the download of a compromised
third-party resource will adequately respond and
classify an external threat.

REFERENCES

1. Haverbeke, Marijn (2018), Eloquent JavaScript, 3rd Edition: A Modern Introduction to Programming Paperback, Dec.4,

2018, available at: http://eloquentjavascript.net.

2. Kingsley-Hughes, Adrian and Kingsley-Hughes, Kathie (2008), JavaScript 1.5 by Example 1st Edition Que Publishing,

1 edition, 312 p.

. Grimes R.A. (2017), Hacking the Hacker: Learn From the Experts Who Take Down Hackers, Hoboken: Wiley, 283 p.

3
4. Yaworski, P. (2015), Web Hacking 101. Kindle Edition, 216 p.

5. Bisson, D. (2017), Researcher warns of ‘pastejacking’ hack attacks targeting users’ clipboards, available at:

https://www.grahamcluley.com

6. Zaitsev, M. (2017), Security of Java applications leaves much to be desired, available at:
https://threatpost.ru/veracode-states-that-java-apps-are-poorly-protected/22946

7. TOP-10 OWASP — 2017 (2017), available at:

https://www.owasp.org/images/9/96/OWASP_Top_10-2017-ru.pdf

Received (Hanmiva) 11.10.2019
Accepted for publication (ITpuitasita mo apyky) 13.11.2019

107

Advanced Information Systems. 2019. Vol. 3, No. 4 ISSN 2522-9052

BI1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

ParimoBa Ipagma — poneHT Kadenpu KOMITIOTEPHHX CHCTEM 1 Mepexk, AsepOallJpKaHCHKUH TeXHIYHWH yHiBepcuteT, baky,
Asep0aiikan;
Irada Rahimova — Associated Professor of Computer Systems and Networks Department, Azerbaijan Technical University,
Baku, Azerbaijan;
e-mail: ika1402@mail.ru; ORCID ID: http://orcid.org/0000-0003-3158-6844

I'y6anoBa ®ipanrm3 — noueHT KadeIpu KOMITIOTEPHHX CHUCTEM 1 Mepex, A3epOaiipkaHChKHMI TeXHIYHMIA yHiBepcuter, baky,
Asep0aiikan;
Firangiz Qubadova — Associated Professor of Computer Systems and Networks Department, Azerbaijan Technical
University, Baku, Azerbaijan;
e-mail: firal 942@hotmail.com; ORCID ID: http://orcid.org/0000- 0002-5031-9787

Ackep-3ane Bapast — nmonenT xadeapn KOMI'IOTEpHHMX CHCTeM 1 Mepex, AsepOail/pkaHCHKMI TeXHIYHMH yHiBepcureT, baky,
Asep0aiipkan;
Barayat Asker zade — Associated Professor of Computer Systems and Networks Department, Azerbaijan Technical
University, Baku, Azerbaijan;
e-mail: askerzade@mail.ru; ORCID ID: http://orcid.org/0000- 0001-7630-5028

IMoraciii Cepriii — kKaHIMIaT €KOHOMIYHUX HAYK, TOLEHT Kadenpu kibepOesneky Ta iHpopMaIiiHuX TeXHONOriH, XapKiBChKHi
HalliOHaJIbHUIT ekoHOMiYHMiT yHiBepcuteT iM. CemeHa Kysneryt, XapkiB, Ykpaina;
Serhii Pohasii — PhD in Economics, Associated Professor of Cybersecurity and Information Technologies Department,
S. Kuznets Kharkiv National University of Economics, Kharkiv, Ukraine;
e-mail: spogasiyl 978@gmail.com; ORCID ID: http://orcid.org/0000-0002-4540-3693

Buxopucranns kpunrorpadgivynux xem-pyHkuiii 1s1 6esnexn JavaScript
L. ParimoBa, ®. I'ybanosa, b. Ackep-3azne, C. IToraciit

AnoTtanis. Ilpeqverom qocixKkeHHs € rporec po3poOKK METOMIB 3aXUCTY BiJ] aTak Ha cropoHHi JavaScript 1 00'ekTHOT
Mozieni JoKkyMeHTa. MeTolo cTaTTi € po3po0Ka anropuTMy i BU3HaAUCHHS €pEKTUBHOCTI BUKOPUCTAHHS KPUITOrpadiuHuX Xell-
GbyHKLIN K O1HOro i3 croco0iB 3aXMCTy Bif aTak Ha cTOpoHHI JavaScript pecypcu. JIaHIFOXKOK 3aBaHTa)XXEHHsI CTOPOHHBOTO
JavaScript Koy MOXXe CKJIQIaI0uuCh 13 TphOX a00 YOTHPHOX CTOPOHHIX BEO-CalTiB. 3 TOUKH 30py OE3NEKH Ie CTBOPIOE PH3HK
aTakW Ha CTOPOHHIN pecypc. SIKIIO aTakyroua CTOpOHA CKOMIIPOMETYE OJMH 3 CTOPOHHIX pecypciB, TO Iie BIUIMHE HAa BECh
JIAHIIOKOK, IO BUKOPHCTOBYE JaHWH pecypc. Buxopsum 3 JaHMX yMOB HEOOXiZHO BHpIIIMTH TakKi 3aBJAaHHA: PO3POOUTH
Oe3revHnid anropuT™M Xem-(QyHKIiH 3aXUCTy 3acTOCYHKIB Ha JavaScript, sIkMil JO3BOJUTH NOCTIHHO MOHITOPUTH 3MiHH, ILO
BiOYBarOThCS Ha BEO-CTOPIHI; BH3HAUUTH MeEpeBard 1 HEJOTIKA METOJy B peajbHUX yMOBaxX eKcIuTyartamii. Y mpomeci
JIOCTIJKEHHSI, OYJIM OTpHMaHi HACTYITHI Pe3yJIbTaTH: PO3TIIHYTa IpodieMaTHka CKJIQJHOCTI HAaIMCaHHs Oe3NMeYHOro Koay Ha
JavaScript, 3anpornoHOBaHMil AJITOPUTM BUKOPHCTAHHS KpUITOrpadiuyHuX Xem-(yHKLiH, CYTh SIKOrO MOJISATae B TOMY, IO XEIl
OOYMCIIIOETECSA B MEPLINIi MOMEHT 3aBAHTa)KEHHS CTOPOHHBOrO pecypcy. IIpu KOKHOMY 3aBaHTa)XCHHI CTOPOHHBOTO PECypCy
JITOPUTM OOUMCITIOE HOro Xell i MOpiBHIOE 31 3HAYEHHSAM IIEpIIOro xeua. BeraHoBieHo, mo kpuntorpadidni xem-GpyHkuii Ha
npukiazni sha384 MaroTh BIACTHBICTH JaBMHHOTO e(ekTy. PeKOMEHI0BAaHO 3aCTOCYBaHHS JJAHOTO METOAY I BeO-CTOPIHOK 3
KPUTHYHO BaXJIMBUMH ONEPALlisIMU, TAKUMU K CTOPIHKH IUIATEXKY, PEECTpallis, 3MiHa mapons abo BXin y oOiikoBHH 3armuc.
Taxo>x BUSIBIIEHO iX CHJIBHI i ClTaOKi CTOPOHH B TIPOLIECi yAOCKOHAIEHHSI MEeTOy 3axucTy JavaScript.

Karw4dosi cuosa: Oesnexa JavaScript; kpunrorpadiuni xem-QyHKIii; MeTox 3axucTy BiJ arak; 00'€eKTHa MOAEINb
JIOKYMEHTA.

Buxopucranns kpunrorpadgivynux xem-pyHkuiii 1s1 6esnexn JavaScript
W. Parumosa, ®. I'ybanosa, b. Ackep-3aze, C. Iloracuit

AnHoTanus. IIpeaverom mccienoBaHus SBISETCS IPOLECC pa3pabOTKH METONOB 3aIUUTHI OT aTaK Ha CTOPOHHUE
JavaScript n 00beKTHYIO MOJIeNb NOKyMeHTa. LlesibIo cTaTbu sABISIETCS pa3paboTKa aaropuTMa u onpezeiieHue 3pGeKTHBHOCTH
HCIOJIb30BaHUS KPUNITOrpaMIecKuX Xem-QyHKIMI KaK OJJHOr0 U3 METOJIOB 3aIllUTHI OT aTak Ha CTOpoHHue JavaScript pecypcsl.
Ilenouka 3arpy3ku ctoponHero JavaScript Kojia MOXKET COCTOSITh U3 TPEX MIIM YEThIPeX CTOPOHHHX BeO-caiiToB. C TOUKH 3peHHs
6€30I1aCHOCTH 3TO CO3JIa€T PUCK aTaku Ha CTOpoHHMII pecypc. Eciu atakyrommas cTOpoHa CKOMIPOMETUPYET OIMH U3 CTOPOHHUX
PECYpPCOB, TO 3TO IOBJIHUACT HA BCIO LIEMOYKY, MCIONB3YIOLIYIO HaHHBbIH pecypc. Mcxons U3 AaHHBIX YCIOBUH HE0OXOOUMO
PELIUTD CIEYIONME 3a4a4u: pa3padboraTh Oe30MACHBIN aNrOpUTM XeI-(YHKIMH 3aIUThl IPUWIOKEHUH Ha JavaScript, KOTOpbIi
MO3BOJIUT IOCTOSIHHO MOHHTOPUTH W3MEHEHMS, NPOUCXOJAINNE Ha BeO-CTPaHMIIE; ONPEIENUTh JIOCTOMHCTBA M HENOCTATKU
METOJa B pealbHBIX YCIOBUAX OKCIUIyaTaluu. B mporecce wuccienoBaHusi ObLIM MOTY4eHBl CIEIYIOIIME Pe3yJibTaThl:
paccMoTpeHa NpobJieMaTuKa CI0KHOCTH HalucaHus Ge30IacHoro kojga Ha JavaScript, IPeIOKEH alrOpUTM HCIONb30BaHUs
KpUNTOrpauueckux Xem-(pyHKUUH, CyTh KOTOPOro 3aKIIOYaeTCsl B TOM, YTO XEIl BBIYUCIACTCS B NEPBBI MOMEHT 3arpy3Ku
cropoHHero pecypca. Ilpu Kax10i 3arpy3ke CTOPOHHET0 pecypca aaropuTM BBIUMCIIAET €ro Xell ¥ CPaBHMBAET CO 3HAYECHHEM
[IepBOro Xella. YCTaHOBJICHO, 4TO Kpunrorpapudeckue xem-(GyHkuun Ha npumepe sha384 obnanaror CBOWCTBOM JIABUHHOIO
sddexra. PexoMeH10BaHO IPHMEHEHUE JTAHHOI'O METOza I BeO-CTPaHUIl ¢ KPUTHYECKH Ba)KHBIMH OIlEPalUsAMH, TAKUMHU Kak
CTPaHMIIbI IUIATEXKA, PErHCTPalysl, CMEHAa MapoJii WIM BXOJ B YUCTHYIO 3alliCh. Takke BbISBICHBI MX CHIIBHbIE M Cla0ble
CTOPOHBI B IIPOLIECCE YCOBEPLIEHCTBOBAHUS METO/IA 3aIlUThl JavaScript.

KawueBbie caoBa: 6e3omacHocTh JavaScript; KpunTorpaguieckue Xem-(pyHKII; METO 3allUThl OT aTaK; 00bEKTHAs
MOJIeNIb JOKYMEHTA.

108

