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STATISTICAL ANALYSIS OF THERMAL NONDESTRUCTIVE TESTING DATA

The features of processing of active thermal nondestructive testing results are considered. Proved the necessity of search and introduction
of new informative parameters in evaluation of thermograms in order to improve the reliability of control. Task of detecting and estimating
the relationships between defect parameters and optimal testing time and the maximum value of temperature signal is set. Computer
simulation of active thermal testing of two samples with artificial defects with known characteristics was performed. Also obtained the
sequences of thermograms and formed the sets of initial data during simulation for correlation, regression and dispersion analysis of testing
results. The method of dynamic thermal tomography was used to determine the levels of maximum differential temperature signal and
optimal testing time. The estimates of correlation coefficient for various informational parameters of thermal control obtained. There is a
high level of relations between the optimal control time and depth of defects. A high correlation also observed between the maximum
value of temperature signal and depth of defects. The nature of relationships between various informative parameters of active thermal
control established by the regression analysis. A one-factor dispersion analysis of the influence of defect parameters on optimal testing
time and maximum value of the temperature signal was performed. High degree of mutual influence of all informative parameters is
established. The conclusion made on the necessity of developing new modern methods for analysis the data of thermal testing. Revealed
patterns in relationships between data show low efficiency of traditional statistical methods in tasks of active thermal testing. Alternatively,
proposed to use the artificial intelligence technologies, in particular, neural networks.
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Introduction

Thermal non-destructive testing methods used to
solve a wide range of tasks due to a number of advantages.
Quality of the received thermograms, which shows the
distribution of thermal field in object of testing (OT),
depends on many factors. Thermal images often contain
high levels of noise, and the nature of defects thermal
imprints does not always allow us to make unambiguous
conclusions about their size, shape, position and depth. In
this regard, in many cases it is impossible to analyze the
technical state of OT, using only one informative
parameter - temperature. It is known that temperature
distribution histograms in defective and defect-free areas
partially overlap each other, which reduces the reliability of
decision-making. Therefore, the relevant task is to search
for additional informative parameters, analysis of which
will increase the reliability of testing.

An important condition for increasing the efficiency
of decision-making by introducing additional informative
parameters is weak correlation of these parameters
among themselves [1]. For today, there are no any
analyses of correlation degree of various informative
features in thermal testing. As a result, there are no
regression models that allow us to estimate the kind of
mathematical relations between different parameters in
thermal testing [2]. Another important task is to carry out
a dispersion analysis of defects parameters influence on
informative signals. Statistical analysis of the results of
active thermal control will determine the most optimal
informative parameters for solving specific tasks of
defectoscopy and defectometry [3].

Task review

Dynamic thermal field of OT describes by
T(x, y, 7) function. During conducting of active thermal
nondestructive testing, we consider the nature of change
of instantaneous temperature values in time at the points
of the surface of OT. To obtain necessary data, the
object of testing is heating over some time by a source

of heat flow. The process of heating and subsequent
cooling of OT is recording using a thermal imager. The
resulting sequence of thermograms reflects the change
in the temperature field on the OT surface in time [4].
Considering the temperature dynamics in separate points of
thermograms (pixels) corresponding to the coordinates of
the surface of OT, it is possible to construct a temperature
profile - the dependence of temperature changes in time for
the given area. Typically, the temperature change in defect-
free areas is constant and considering to be known. It is
possible to enter some reference temperature value
Tod(Xng, Yng» ©), Which is taken as defect-free. In the
defective zone, the regular nature of the thermal field is
violated and there are local temperature differences
Ty(x, y, 7), that lead to changes in temperature profile. Thus,
it is possible to calculate the value of temperature
difference between defective and defect-free areas:

AT(x,y,r)= Iy (x,y,r)—Tnd (xnd’yndﬁtnd) :

Time oy, at which the value of AT(x, y, 7) in this
area of OT becomes the maximum, is called the optimal
testing time:

AT ax (x, y,r) = AT hax (Topz )

An important parameter influencing the shape of
temperature profile is the geometric dimension of defect
h(x,y,z). It is known that increases of transverse
dimensions of defects x and y at constant thickness z
leads to an increase the heat amount needed for its
heating. This process is describing by heat transfer
equation. When increase the defect’s size, the speed of
his heating decreases, which leads to a change in shape
of thermal profile. In particular, for deeper defects, the
value AT, decreases and optimal observation time 7,
increases. However, for near-surface defects, this
dependence not observed [5]. In [6] argued that the size
of defects significantly affects the magnitude of AT .
signal, but almost does not affect the 7., value. Thus, it
is possible to construct linear gauge dependences of
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optimal testing time 1, from the depth / for defects with
known parameters. These dependencies are linear
functions, which makes it easy to estimate the depth of
defects in known optimal time z,. This approach used
in the method of dynamic thermal tomography [7].

In the simplest case, decisions about the technical
state of OT are taking by one informative parameter, for
example, temperature. In the presence of high levels of
noise, a complex structure of OT and some other
factors, the distribution of temperature values in
defective and defect-free areas may be similar, which
significantly reduces the probability of testing. It is
possible to increase the statistical defect detection
parameters by introducing additional informative
parameters. This is because in the general case,
defective and defect-free areas can overlap by one
parameter, but be differ substantially from other
parameters. For example, optimal observation time oy
increases with deeper depth, which allows separating
internal defects from surface noise. Another informative
parameter may be the geometric dimension /% of the
temperature anomaly, which allows separate the signals
from scratches and internal defects with a large area.

In the general case, any area on the OT surface can be
characterized by N parameters. A decision about degree of
difference between the corresponding statistical distributions
will be taken in the multidimensional feature space. For the
effective use of additional informative parameters, the
relationship between them should be weak. Of particular
interest is the estimation of relations of an informative
parameter with a certain characteristic of defect, for
example, him size or depth [8]. Statistical analysis of such
dependencies will allow us to develop methods for solving
inverse tasks of thermal nondestructive testing.

Problem statement

In the frame of this study, was perform a statistical
analysis of data obtained by computer simulation of active
thermal nondestructive testing of a metal plate. The aim of
the work is to identify and analyze the relationships
between the maximum values of differential temperature
signals AT,y the optimal observation times zy, the
depths and geometric dimensions of defects. Statistical
analysis of data includes correlation analysis, building of
regression models and dispersion analysis. The obtained
results will allow determining the most optimal
informative parameters for solving tasks of thermal
defectometry and increase the reliability of testing.

Description of input data

For the purpose of statistical analysis of testing
results, a simulation of OT heating and cooling process
was performed by COMSOL Multiphysics software. In
simulation, an artificial mathematical model of an 10 mm
thick aluminum plate with 100 mm sides was considered
(Fig. 1, a). There are artificial defects in the middle of OT,
which are air cavities of square shape of various sizes and
2 mm thickness. For various experiments, the defects were
located at different depths. In addition, to simulate uneven
heating on the upper edge of the sample, there are linear
sources of low power heat flux, not shown in the diagrams.
The heating carried out by a pulse of 0.1 s duration with a

heat flux of 100 kW/m? power density, which applied to
the upper edge of the plate. Thermograms recording took
place for 3 seconds. As a result, sequences of thermographs
containing 50 images recorded.

In order to exclude the influence of the size of
defects on temperature profile, defects of the same size
(4 mm) analyzed for determining the relationship
between the optimal observation time and the depth of
defect. Similarly, relationship between the value of
temperature signal and depth of defects evaluated. The
thermogram of such sample in optimal testing time
showed in Fig. 1,b. Due to the effect of thermal
diffusion, thermal imprints of defects on the OT
surface have fuzzy boundaries.

a b
Fig. 1. Results of computer simulation of the first sample:
a - scheme of an artificial sample; b — thermogram
in optimal testing time

Fuzziness increases with increasing of defects
depth and diminishing of their size. The high level of
thermal diffusion makes it impossible to estimate the
shape and size of defects. This fact greatly complicates
the visual processing of thermograms, and creates
considerable difficulties in digital image analysis by
most existing methods.

A defect map (Fig. 2, a) and a thermal tomogram
(Fig. 2, b) were obtained by the application of dynamic
thermal tomography method (DTT) [9]. Information about
three defects was lost using the DTT method, due to the
low sensitivity and the presence of noise. The shape and
size of the detected defects significantly distorted. There
are external noise in the image. In this regard, during the
formation of samples for statistical analysis of data, signals
selected only from areas whose defective status was
determined without errors. The degree of correlation
between the optimal observation time and the maximum
value of the temperature signal was also determined for
faultlessly detected defective points of the sample.

The influence of defects size on the value of
temperature signal and optimal observation time was
investigated on a specimen with defects located at the
same depth of 2 mm. The scheme of the sample and the
thermogram in optimal testing time showed in Fig. 3.

The values of ATy, and 7, measured for
formation of studied examples from total set of received
signal samples for each of 15 defects. Measurement
carried out at random points of the thermal imprints of
the defects. Samples selected only from defective points
that identified correctly. Size of the samples datasets
(vectors of AT and 1oy) for each individual
experiment corresponds to the total number of defects.
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Fig. 2. Results of thermograms sequence processing
by the method of dynamic thermal tomography:
a — timegram; b — thermal tomogram

a o
Fig. 3. Results of computer simulation of the second

sample: a — scheme of an artificial sample,
b — thermogram in optimal testing time

Correlation analysis

In order to verify the relationship between the
informative parameters of active thermal testing and
defect parameters, Pearson correlation coefficients for
received datasets were determined [10]. Algorithms for
determining the correlation coefficient and checking the
significance of obtained data implemented in the
MATLAB software. Since the measured values of AT,y
and 7, are random variables, a check on the normality
of their distribution according to the Pearson
consistency criterion performed. The standard chi2gof
function was used for this. As a result, a normal data
distribution law confirmed and Pearson correlation
coefficients determined. Since the number of samples is
insignificant (n=15), the corrected correlation
coefficient was calculated:

7 =1’A{1+;5/2/(n—3)}.

The significance of the correlation coefficients
checked by Student and Gauss statisticians. The tabular
value of Student's coefficient for the probability of 0.05
and the degree of freedom n-2 is fys= 1.771. The table
value of the quantile of Gaussian distribution for the
probability 0.05 is r405=1.96. In all cases, considered
correlation coefficients are significant. The obtained
values of corrected Pearson correlation coefficients and
confidence limits for P =0.95 are shown in Table 1.

Table 1 —Pearson correlation coefficients in the confidence
limits for the received data

Parameter Topt AT nax

Depth / 0.889 < 0.963 <0.989 | -0.908 <-0.793 <-0.366
Defects 0.04<0.544<0.826 | 0.995<0.998 <0.999
size h

Topt - -0.835 <-0.564 < -0.072

Regression

A regression analysis of data performed in the
MATLAB for purpose of establishing the type and
studying the relationship between variables [11].
Regression models that reflect these dependencies are
constructed.  Estimated standard and extended
uncertainty. The nature of the dependence and
regression equation for the studied datasets shown in
Table 2. Regression graphs shown in Fig. 4.

Table 2 — Regression for the studied data

» Y Topes € AT, °K
gfgth L Y(X)=0.084-e"304 | y(x)=-0877.°840F
lsz,iznim Y(X)=05-X-247 | Y(X)=3.052-X-3.59
Topts S - Y(X)=4.132%—3.43

Dispersion analysis

In order to study the influence of factor features
(defect depth, defect size) on the result features (AT ax
and 7,,), one-factor dispersion analysis was performed
[12]. Four groups of observations (for /= [2 mm, 3 mm,
4 mm, 5 mm]) were formed to evaluate the influence of
defect depth on informative parameters. The number of
samples in each group comprised 12 to 14 elements.
Similarly, for the estimation of influence of defects size
on informative parameters, four groups of observations
(for A =[7 mm, 6 mm, 5 mm, 4 mm]) were formed. The
number of samples in each group comprised 12 to 15
elements. The significance of obtained results was
checked by Fisher's criterion F,(v;, v;) for the
significance level a =0.05. In a result of calculations,
all estimates considered significant. The obtained values
of the influence of factor features on the measurement
results shown in Table 3.

Discussion

In this work was established the presence of a high
level of relationship (= 0.963) between optimal testing
time and depth of defects, which is explained by the
process of distribution of heat packets from surface to
the middle of specimen.

Nearly functional relations (= 0.998) was found
between the maximum value of temperature signal and
size of defects. This explained by the fact that for
homogeneous defects in the physical sense at same
depth, the value of temperature signal depends linearly
on the power of heating source [13]. Under conditions
of uniform heating, larger defects absorb more heat,
which leads to slower cooling and, consequently, higher
values of differential temperature signal.

A high correlation (r=-0.793) is observed
between the maximum value of temperature signal and
depth of defects. As the depth of penetration increases,
the intensity of thermal waves fades out. This leads to a
decrease in amount of heat absorbed by defects of the
same size. Consequently, presence of a correlation
relations in this case is also confirmed by a physical
substantiation [14].
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Topt, S

e
Fig. 4. Regression: a — exponential regression for 7, and /;
b — exponential regression for A7, and /; ¢ — linear
regression for ,,, and /; d — linear regression for AT,,,.
and /; e — hyperbolic regression for z,,, and AT,

Table 3 — Values of the influences of depth and size
of defects on informative parameters

Parameter Topt AT
Depth / 91,89 % 99,23 %
Size h 32,05 % 96,29 %

A noticeable correlation (r=0.544) is observed
between optimal testing time and defect size. For the
same depth and physical structure, larger defects absorb
more heat. This leads to the fact that, under uniform
heating conditions, defects that are more massive
require more time to heat up to the maximum value of
temperature signal.

There is a noticeable correlation (r=-0.564) and
a hyperbolic relations is established between optimal
testing time and maximum value of temperature signal.
This calls into question the possibility of using these
parameters in image recognition tasks using statistical
methods. As known, to improve the accuracy of
recognition, a weak correlation between the parameters
that form the set of signs is required.

Parameters related to the defects depth have a
complex nonlinear relationship. This may be due to the
nature of extinction of thermal radiation when propagated
deep into OT, which described by exponential

dependences [15]. The obtained dependences can be used
in determining of optimal heating parameters.

A one-factor dispersion analysis of the influence of
defect parameters on optimal testing time and maximum
value of temperature signal was carried out. The high
degree of influence of defect depth on both informative
parameters (7=91.89% on 7, and #=99.23% on
AT.x) is established. High influence (5 = 96.29 %) of
defect size on the maximum value of temperature signal
was also detected. Obtained results may be explained by
the presence of a significant correlation between these
parameters, which caused by peculiarities of physical
processes occurring in OT during active thermal testing.
Determined high levels of influence allow linking the
considered parameters of signal with the defect
parameters and use this dependence data in defectometry
tasks. Less significant effect (7 = 32.05 %) has the size of
defect at optimal testing time. However, the value of
influence does not allow neglecting it in data analysis.

Conclusions

Obtained results testify to the complexity of
unambiguous interpretation of thermal testing data due
to a large number of relationship parameters. The nature
of the relations is mostly complex and nonlinear, which
complicates the data processing by traditional statistical
methods.

The presence of a significant correlation between
considered informative parameters calls into question
the possibility of their use for forming feature space in
tasks of pattern recognition. At the same time, obtained
numerical and mathematical dependences can be used in
the development of new methods of thermal testing or
analysis of temperature data. The optimal testing time
depends strongly on the defects depth and, to a lesser
extent, on the size of the defects, which allows using
this parameter to construct the gauge dependencies in
the tasks of thermal tomography. The maximum value
of temperature signal significantly related to both depth
and the size of the defects. This proves the need for
further analysis and introduction of additional
informative parameters to improve the reliability of
testing. Obtained results also should be taken into
account during selection of experiment parameters in
active thermal testing.

The revealed and estimated patterns confirm the
relevance of issue of choosing or developing new
modern methods for analyzing the thermal testing data.
Promising statistical method of temperature data
processing is a principal components analysis method,
which allows reducing the dimension of initial dataset
by excluding from the consideration of interrelated and
uninformative parameters. Another effective means of
thermograms processing are artificial neural networks,
which have the ability to work with complex nonlinear
dependencies. Application of artificial intelligence in
the tasks of thermal testing is of high interest for further
study.
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CraTHCTHYHHUI aHAJI3 JaHUX TENJIOBOI0 HePYiiHIBHOI0 KOHTPOJIIO
P. M. I'anaran, A. C. Momor

PosristHyTo 0cO0MMBOCTI 0OpOOKHM pe3yNbTaTiB aKTHBHOI'O TEIUIOBOrO HEPYHHIBHOTO KOHTpONO. J[oBeneHO HeoOXiTHICTh
TOIIYKY Ta BBEICHHS HOBUX iHQOPMATUBHHX MapaMeTPiB MPH OLIHI{ TEPMOrpaM 3 METO0 HOKPAIIEHHS JOCTOBIPHOCTI KOHTPOIIO.
IMocTaBneHa 3ajaua BUSIBICHHS Ta OLIHKM B3a€MO3B’SI3KIB MDK IapaMeTpamMH Ae(eKTiB Ta ONTHMAIBHHUM 4acoM KOHTPOIIO i
MAaKCHMAJIbHUM 3HA4Y€HHSM TEMIEpAaTypHOro CHrHary. IIpoBeleHO KOMII'IOTEpHE MOJCIIOBAHHS IPOLECY AKTUBHOIO TEIIOBOIO
KOHTPOJIIO JIBOX 3pa3KiB 31 INTYy4HMMH JeeKTaMu 3 BiZIOMMMHU XapakrepucTHkamu. OTpHUMAHO IIOCIIJOBHOCTI TepMorpam Ta
copMOBaHO HAOOpH IOYATKOBUX JAHMX [V HPOBEACHHS KOPEIMLIHHOro, perpecifHoro Ta JMCIEpCiiiHOro aHali3iB pe3ylbTaTiB
KoHTpomo. Jns BU3HA4YEHHS PIBHIB MAKCHMAJIbHOTO JM(EPEHLIaIbHOrO TEMIIEPAaTypHOTO CUTHAILY Ta ONTHMAIBHOIO 4acy
CIIOCTEPE)KECHHsI BUKOPHCTOBYBABCS METOZ JIMHAMIYHOI TeruioBoi Tomorpadii. OTpuMaHo oLiHKM KoedillieHTa KOpessLii st pi3HuX
iH(OPMAaTUBHUX INApaMeTPiB TEIUIOBOTO KOHTPONIO. BCTaHOBNIGHA HAsBHICTH BHUCOKOIO PiBHS 3B’A3KY MDK ONTHMAJIBHUM 4YacoM
KOHTPOJIIO Ta IJIMOMHOKO 3aisraHHs JedexriB. Bucoka Kopersuis TakoX CHOCTEPIraeTbcs MDK MAaKCUMAIBHUM 3HAYCHHSIM
TEMIIEpaTypHOro CHTHATY Ta MIMOWHOIO 3aJisraHHs ieekTiB. B pesynbprari npoBeneHHs perpeciiiHoro aHasisy BCTAHOBJICHO XapaKTep
B3a€EMO3B’SI3KIB MK DI3HMMH IH(OPMATHBHHMH IapaMeTpaMy aKTUBHOTO TEIUIOBOrO KOHTpoito. IIpoBeneHO onHO(aKTOpHMIA
JWCHEpCIHHUI aHalli3 BIUIMBY IapaMeTpiB JedeKTiB Ha ONTUMAIBHHK 4ac KOHTPOJIO Ta MAaKCHMAJbHE 3HAYeHHS TeMIepaTypHOro
curHainy. BcraHOBIIGHO BHCOKMH CTYHiHb B3a€MOBIUIMBY BCIX iH()OPMAaTHBHMX NapaMeTpiB. 3poOJIeHO BUCHOBKM HPO HEOOXiIHICTBH
PO3POOKM HOBMX Cy4aCHHMX METOJIB aHAIIi3y JJaHWX TEIUIOBOrO KOHTPONIO. BHsBIIEHI 3aKOHOMIPHOCTI y B3a€MO3B’sI3KaxX MK JaHUMH
CBIYaTh NPO HM3bKY e(EKTHBHICTh TPAAMIIIHMX CTATHCTUYHMX METOMIB B 3a7adaxX aKTHBHOIO TEIUIOBOrO KOHTpomo. B skocri
aJIETEPHATHUBYU IPOIOHYETHCS 3aCTOCYBaHHSI TEXHOJIOTIH IITYYHOrO IHTENIEKTY, 30KpeMa, HeHPOHHUX MEPEX.

Karo4doBi cioBa: HepylHIBHMH KOHTpOJIb; TCIUIOBHH KOHTDPOJb; KOPEIALIMHMI aHami3; perpecis; aucrepciiiHuit
aHaJi3; 00po0Ka TepMorpam.

CraTHcTHYeCKM aHAJIM3 JAHHBIX TENJIOBOI0 Hepa3pyLIalonero KOHTpoJIs
P. M. I'anaran, A. C. Momor

PaccMOTpeHBl  OCOOCHHOCTH O00Opa0OOTKH PE3YNIbTaTOB aKTHBHOIO TEIUIOBOIO HEpaspyLIAIOero KoHTpons. Jlokasana
HEOOXOMMOCTh TOMCKA W BBEACHHS HOBBIX HH(OPMATHBHBIX [AapaMETPOB IPH OLEHKE TEPMOrPaMM C LENBbI0 YIyUIICHHS
JIOCTOBEPHOCTH KOHTpOJisl. TTocTaBsIeHHasI 3a/1a4a BBISBIICHHS U OLICHKH B3aUMOCBSI3eH MEKIY [apameTpamMu Je(eKToB, ONTHMAILHBIM
BPEMEHEM KOHTPOJIS H MAKCUMAJIbHBIM 3HAYCHHEM TEMIIEPATYpPHOro CHrHaia. [IpoBe/IcHO KOMITBEOTEPHOE MOJICIMPOBAHKE MPOLIecca
AKTHBHOI'O TEIUIOBOTO KOHTPOJSI ZIBYX OOpa3liOB C MCKYCCTBEHHBIMH JE(EKTAMH C H3BECTHBIMH XapaKTEpPUCTHKaMH. I10NydeHsl
TOC/IE/IOBATEIIbHOCTH  TepMOrpaMM  H cpOpMHPOBAaHbI HAOOPbI MCXOAHBIX JIAHHBIX [UIS TPOBEICHHS KOPPEISIHOHHOIO,
PErPecCHOHHOTO ¥ JUCIEPCHOHHOIO aHAJIM30B PE3yNbTaToB KOHTpOAS. JIsi  onpeleneHus ypOBHEH MaKCHMAIBLHOTO
U GepeHIHaNIbHOrO TEMIIEPaTYPHOrO CHTHAJIA M ONTHMAIBHOIO BPEMEHH HAONIONECHMS HCIIONB30BAJICS METOJ AMHAMITYECKOM
TerwioBoi Tomorpaduu. TTomydeHsl OLEHKH KO3 (UIMEHTa KOPPEISLMI [UTs Pa3iiHbIX HH()OPMATHBHBIX [apAMETPOB TEILIOBOIO
KOHTpOIS.. B pe3ynbrate NpoBeneHMsS PErpecCHOHHOrO aHalu3a YCTAHOBIGHO XapakTep B3aHMOCBS3eHl MEXIy padITMYHBIMH
MH(QOPMATHBHBIMH TTApaMETPaMH AKTHBHOI'O TEILIOBOrO KOHTpONs. IIpoBelneH OfHO(DAKTOPHBINA IUCIEPCHOHHBIA aHAIN3 BIIHSHUS
HapamMeTpoB IeGeKTOB Ha OITUMAIBHOE BPEMs KOHTPOJISI X MAKCHMATIBHOE 3HAYCHHE TEMIIEPaTypHOrO CHTHaIA. Y CTAHOBJICHA BBICOKAsI
CTeTeHb B3aUMOCBSI3€H BCEX PACCMOTPEHHBIX HH(OPMATHUBHBIX napaMeTpoB. CriesiaHbl BRIBOIBI O HEOOXOMMMOCTH pa3paboTKH HOBBIX
COBPEMEHHBIX METOJIOB aHAJIH3a JIAHHBIX TEIUIOBOr0 KOHTpOIIs. OOHApY)KEHHbIE 3aKOHOMEPHOCTH BO B3aHMOCBSI3X MEK/Y TaHHBIMU
CBHUICTEIILCTBYIOT O HU3KOI 3()(EKTHBHOCTH TPAJMIMOHHBIX CTATHCTUYECKMX METOJIOB B 33/1a4aX aKTHBHOIO TEIUIOBOrO KOHTPOJIs. B
Ka4yeCTBE AIbTEPHATHBBI [IPE/UTAraeTcs IPUMEHCHHUE TEXHOJIOTHiT MCKYCCTBEHHOTO HHTEJIIEKTa, B YACTHOCTH, HEHPOHHBIX CETEH.

KiaouyeBble cioBa: Hepa3pymIAIONUK KOHTPOJb; TEIUIOBOH KOHTPOJb; KOPPESLMOHHBIN aHalu3; perpeccus;
JIICIIEPCUOHHBIN aHAN3; 00paboTKa TepMOrpaMm.
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