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METHODOLOGICAL BASIS OF SOLVING SPHERE PACKING PROBLEM:
TRANSFORMATION OF KNAPSACK PROBLEM TO OPEN DIMENSION PROBLEM

The subject matter of the paper is the problem of optimal packing of spheres of different dimension into a container of
arbitrary geometric shape. The goal is to construct a mathematical model which associates different statements of the
problem. Sphere packing problems (SPP) are combinatorial optimization problems known as cutting and packing problems.
SPP consists in placement of a given set of spheres with given radii into a container of regular or irregular geometric shape.
The task to be solved are: to investigate mathematical models of the two formulations according to the classification of
cutting and packing problems: knapsack problems (KP) and open dimension problems (ODP); to construct a mathematical
model which allow solve KP as ODP. The methods used are: the phi-function technique, increasing the problem
dimension, homothetic transformations. KP is formulated as mixed discrete-continuous programming problem. A new
approach which reduces solving KP to solving ODP for packing unequal and equal spheres into a container with the
variable coefficient of homothety and allows adopt the jump algorithm for KP is suggested. To this end, for a given set of
spheres KP is stated as a nonlinear programming problem in which the coefficient of homothety is an independent variable
bounded below. The unit value of the coefficient corresponds to the original size of the container. A graphical illustration
of the optimization process is presented. Conclusions. The approach suggested is a methodological basis for solving SPP.
The generality of the approach lies in the fact that solving SPP does not depend on its formulation (KP or ODP). The
approach is suitable for packing unequal and equal spheres into containers of arbitrary spatial shapes for which phi-
functions can be constructed.
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Introduction

Sphere packing problems (SPP) are known to be
NP-hard combinatorial optimization problems. These
problems relate to the field of cutting and packing. SPP
consists in placement of a given set of spheres with
known radii into a container of regular or irregular
geometric shape. In the general case, spheres can be of
different dimension (2D — circles, 3D — hard spheres,
nD — hard hyperspheres).

SPP have a wide spectrum of scientific and
practical applications. In two and three dimensions there
are real-world applications in a range of industries, for
example, the textile, apparel, automobile, aerospace and
chemical industries [1], in particular, in additive
manufacturing for optimization of product's topology
[2] and in medicine for automated radio-surgical
treatment planning [3]. In higher dimensions packing
hard hyperspheres is used to model geometrical
frustration and the geometry of the crystalline state [4].
Packing hyperspheres may be used in the numerical
evaluation of integrals, either on the surface of a sphere
or in its interior [5]. The problems also arise in coding
theory, digital communications and storage, for
example, CD, cell phones, and the Internet [5, 6].

Waescher et al. [7] introduce the classification of
cutting and packing problems. According to the
classification two classes of packing problems KP and
ODP are considered depending on characteristics of
dimensions (sizes) of a container (fixed dimensions or at
least one variable dimension) and the form of objective
function (maximum packing factor or minimum size).
KP consists in packing of spheres with given radii from
a collection into a container of fixed sizes with
maximum packing factor. In ODP all spheres from the
collection should be packed into the container with

several fixed sizes and a variable metric characterestic
that has to be minimized.

Some researchers (for example, [8, 9]) use the KP
formulation. If it is necessary to solve the ODP, a
dichotomous search for the variable size is used, i.e.
ODP solution is reduced to solving a KP sequence,
which leads to an increase in counting time.

In [10] the SPP is formulated as ODP. As the
minimum container size, the radius, length, height,
perimeter, area, volume, surface area are used. A
nonlinear twice-differentiable mathematical model is
proposed, which allows to obtain a local minimum of
the problem.

In [11,12] mathematical models based on
increasing the problem dimension are used to solve KP
for equal spheres. Radii of the spheres are temporary
assumed to be variable and the sum of the sphere
volumes is maximized until the radii reach their starting
values. Such an optimization procedure provides
growing microcopies of the spheres to its original sizes.
The multistart strategy is applied to obtain a better
solution of KP. If the global maximum of the objective
can not be obtained, then the number of spheres to be
packed into container is reduced until a feasible packing
is calculated.

The idea of additional variable metric
characteristics was extended for unequal spheres. Papers
[13, 14] propose adaptations of the efficient jump
algorithm [15] for different dimension. The jump
algorithm realizes a directed transition from one local
minimum of ODP to another to yield an improvement of
the objective.

This paper continues to investigate mathematical
models of KP and ODP. A new approach which reduces
solving KP to solving ODP for packing spheres into a
container with the variable coefficient of homothety and
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allows adopt the jump algorithm for KP is suggested. The
approach is a methodological basis for solving SPP which
does not depend on the problem statement (KP or ODP).

Mathematical Models of KP and ODP

KP is stated as follows. Let there be given a
container C = R? of fixed sizes and a collection of
spheres S;(u;) CRd, iely=1{,.,N}, with known
radii. The problem consists in packing a subset spheres
from the collection S;(u;), i € I, without overllapping
inside C yielding the maximum packing factor. Here
is a motion vector of S;, iely, d>2 is space

Ui

dimension.

Let K types of spheres from the collection
S;(u;), iely with radii 7, be considered,
kelg ={1,2,..,K} . We denote the number of spheres
of the k-th type that can be fully arranged inside C by
n,, kelg, and generate a tuple ¢ =(ny,ny,....,ng).
Each tuple ¢ has to involve at least one nonzero

element 7y, k€ lx . We denote a set of possible tuples

K
t by T . The cardinality of T is [ [ (n +1). We form a
k=1

subset S’ of spheres Siuy), jedJ={,2,..,n} from
the collection S;(u;), i €Iy with respect to the tuple

K

t=(n,ny,....ng), where n= an .
k=1

A subset S’ taking into account translation is

denoted by S'(v)= {E;(v;),jel}, where

is a vector of placement
Si(v;), jed,

v=(V,V,., V) € R
parameters of spheres
Vi = (X)X 50 Xg5) is a translation vector of Si(v;).
Thus, KP can be formulated as to find such subset
of spheres S (v¥), ge Ip, that can be fully arranged

within the container C with the maximum packing
factor:

F'=F (" ()=max Y. (), (n)eW <R xT, (1)

tel jeJ

W={(v,t): ch/(stV/)ZOs i,jEJ,i>j,

@
®; (1) 20, ieJ},

where @, (v;) is a phi-function for S; €S’ and the
object C" =R*\intC ,
d ) )
Oy (vi,v)= D (i —3%) "= (1 +77)° 20
k=1
To solve problem (1)-(2) one should realised an

exhastive search of all elements of the set 7' and try to
find a packing of spheres according to each tuple t € T .

ODP has another formulation. A collection of
spheres S;(u;), i€y, have to be packed into the

container C of a variable size (area, volume, or a
metric characteristic) that has to be minimized.

A mathematical model of ODP can be presented as
to find

p*=minu,s,t.Y=(u,u)eWCRdN+], 3)
where p is a metric characteristic to be optimized,

D, (u;,1) 20, i e Iy}, @
Inequality
d
@i (uj,u;)= Z(xki —x,g-)z_(rl. +rj)2 >0
k=l
guarantees non-overlapping spheres S; and S;.

Inequality ®@;(u;,n)=0 provides a placement of

Transformation of knapsack problem
to open dimension problem

The increase in the dimension of the problem due
to the introduction of variable metric characteristics of
the objects to be placed was successful in solving the
problems of packing equal and unequal spheres [11, 14].
In this regard, this approach is distributed to the metric
characteristics of the container. Taking into account the
ODP peculiarities, it is convenient to choose a
coefficient homothety of the container as such a
characteristic. With the ability to proportionally resize
the container, one can solve KP (1)-(2) for a tuple as
ODP (3)-(4). The homothety coefficient A is associated
as the open dimension parameter which is the metric
characteristic to be minimized.

Let C(k)z{kxeRd:xeC}, where A is a

scaling parameter.

To describe placement (non-overlapping and
containment) constraints the phi-function technique [16,
17] is employed. A mathematical model of KP for a
given tuple can be formulated as the following nonlinear
programming problem:

min A s.t. Y=(k,ul,uz,...uN)eWCRd”H, )
Wz{Ychl(ul,ul)ZO, i,jEIN,j>i,

(6)
D, ()20, iely, A21},

where uy,u,,..uy are motion vectors for spheres
Si(uw;), iely, function ®;(Y), i,jely,j>i, is a
phi-function to ensure the non-overlapping constraint,
function ®;(v), iely, is a phi-function for the
containment constraints. Variable A occurs in all
inequalities ®; (¥Y)>0, ie/y, describing interaction

of spheres and container C(1’) and bounded from below
by inequalityA >1. To thisend, C < C(A) .
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Thus, problem (5)-(6) can be considered as ODP
with open parameter A . To solve the problem the jump
algorithm can be efficiently applied.

A global minimum point v =(k*,u;k ,u;,...u*]\,)
(5)-(6) provides
S; (u:), ie N, into container C(k*) =C, A =1 , and
corresponds to a solution of problem (1)-(2) for the

for problem packing  spheres

given tuple. If at the point v' value A" >1, then
CcC(A), i.e. we do not have original container and
hense there is no a feasible packing corresponding to a

solution of problem (1) — (2). The multistart strategy
should be exploited to obtain the required size of the

container.
A starting point to solve problem (5) — (6) can be

calculated by solving the problem for container C(ko)
where A° >1 should provide a packing of the spheres
according to the tuple ¢ . In Fig.1 a starting point for the

packing circles into the rectangle C(ko), A0 =11 is

shown. Solving problem by means of the jump
algorithm leads to the packing illustrated in Fig. 2.

Fig. 1. Illustration of a packing
of circles into the rectangle C(1,1)

Although, solving problem (5)-(6) does not save
from an exhaustive search of tuples from the set 7 such
approach improve significantly quality of solution
obtained due to high performance of the jump
algorithm. The jump algorithm is suitable for packing
unequal spheres. So, in order to pack equal spheres,
another solution method of problem (5)-(6) is required.
Any optimization procedure which gives a global
solution of problem (5)-(6) can be applied.

Conclusions

The approach suggested in the paper allows to
reduce KP to ODP and apply the known jump algorithm

Fig. 2. The final packing
of circles into the rectangle C(1)

to solve KP for a given tuple. Such a transition was
made possible by introducing a variable container size
using the homothety coefficient. The approach is
suitable for packing unequal and equal spheres into
containers of arbitrary spatial shapes for which phi-
functions can be constructed. The more complicated the
spatial shape of the container, the harder to solve the
problem.

Mathematical models constructed contribute to the
field of cutting and packing to describe a common
methodology to solve SPP. Further study of the
properties of SPP and the development of effective
solution methods is a priority for advance research.

10.
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MeTtomos1oriuHi OCHOBH PO3B’SI3aHHS 32124l YIIAKOBKH KYJIb:
TepeTBOPEHHS 32/1a4i PO PIOK3aK y 3a/a4y 3i 3SMiHHHM po3MipomM

I'". M. fIcekoB, C. b. IllexoB1oB

IIpeaqmerom crarTi € 3a7aya ONTHUMAJbHOI YHAKOBKH Ky/b Pi3HOI PO3MIPHOCTI B KOHTEHHEp IOBINBHOI IeOMETPHYHOL
¢dopmu. Meta nomnsirae B ToMy, 1100 1o0yayBaTH MaTeMaTUYHY MOJEIb, B sIKiil 3B'SI3yIOTbCS Pi3HI (OpPMYIIIOBAaHHS 3azadi.
3anaua ynakoBku Kyib (SPP) e 3amauero koMOiHaTOpHOI onTuMi3anii, BiIOMOIO K 3a/ia4a po3Kporo it ynakoBku. SPP nonsrae B
PO3MIIIEHHI 331aHOr0 HabOpy Kyib i3 3aJJaHUMHU pajiiycaMu B KOHTEIHepi MpaBmIbHOI 200 HeNPaBUIIbHOI T€OMETPUYHOI (hOpMH.
3amaya, sIKy HEOOXiHO BHPIIINTH, IOJSTae B TOMY, II00: JOCIIIUTH MaTeMaTHYHI MOJEJ JBOX ITOCTAHOBOK BIATIOBIZHO IO
kinacuikamii 3amad po3kporo ¥ ymakoBku: 3amadi npo prok3ak (KP) Ta 3amaui 3i 3mMiHHMM po3mipom (ODP); moOymyBaTh
MaTeMaTH4YHy MOJIENb, SKa JI03BOJsie po3B’a3aTu 3anauy KP sk 3agauy ODP. BuxopucroBysani meronu: meton phi-dyHKIiH,
301IbLICHHS. PO3MIPHOCTI 3a/iayi, TOMOTETHYHI neperBopeHHs. 3azaua KP ¢opmymroeTbes K 3MilllaHa 3azaya JIUCKPETHO-
HellepepBHOro nporpaMmysaHHs. [IpomoHyeTbcs HOBUH Mifxix, B KoMy po3B’s3aHHs 3agadi KP 3BoauThCs 10 pO3B’s3aHHA
3apaui ODP nns ynmakoBKM HEpiBHHMX 1 PIBHHX Kyllb Y KOHTEHHepi 31 3MiHHUM Koe(illieHTOM roMotetii ¥ sikuil no3Bonse
BUKOPHUCTOBYBATH jump-ainroput™ s 3agadi KP. 3 mieto meroro 3amaua KP st manoro Habopy Kyiib HpeNCTaBIISETBCA Y
BUIVIAZ 3a7aui HENiHIMHOrO HporpamMyBaHHs, B SIKiH Koe(illieHT roMoTeTii pO3IisiIacThCsl B SKOCTI HE3aJeXKHOI 3MIHHOI,
obomexxeHoro 3HM3y. KoedimieHT roMoTeTii, SKuil JOpiBHIOE OMHUII, BiIIOBIa€ II0YaTKOBOMY pO3Mipy KoHTeliHepa. 300paxeHa
rpadivna imrocTpaliis npouecy ontumizanii. BucHOBKH. 3arporoHOBaHUH i JIXi]] € METOIOIOTIYHOK OCHOBOIO ISl PO3B’ SI3aHHS
3aga4i SPP. YHiBepcasbHICTP IiAXOy HOJSTac B TOMY, IO PO3B’A3aHHS 33/1a4i He 3aJexuTh BiJ 11 mocranoBku (KP abo ODP).
IMinxin 3acTOCOBHMIA Ul YIIAKOBKM HEPIBHHX 1 PIBHUX KylIb y KOHTEHHEpax JOBUIBHUX HPOCTOPOBUX (HOPM, JUIsl SKHX MOXKYTh
Oyru noGynoBaHi phi-pyHkii.

Karo4doBi caoBa: Kyius; rinepkyis; ynakoBka Kyilb; 3ajiaua IIPO PIOK3aK; 3ajaya 31 3MIHHHM PO3MipoM; HelliHiiiHa
ONTUMI3allis.

MeToa0/10rH4eCKHe OCHOBBI PELIEH s 321241 YIAKOBKH LIAPOB:
npeodpasoBanue 341 0 PIOK3aKe B 32121y ¢ epeMeHHbIM pa3MepoM

I'. H. Scwkos, C. b. IllexoB1oB

IIpeamerom cTaThH SBISETCS 3a7adya ONTUMAIBHOM yIMAaKOBKH IIApPOB Pa3HOM pasMEPHOCTH B KOHTEHHEP MPOU3BOJIBHOM
reomerpuyeckoid ¢opmbl. Ieas coctouT B TOM, 4TOOBI HOCTPOMTH MAaTEeMaTHUYECKYI0 MOJENb, B KOTOPOH CBS3BIBAIOTCS
pasiuuHble (OPMYIMPOBKM 33/aud. 3ajnada ymakoBku mapoB (SPP) sBisercss 3amadeil KOMOMHATOpPHOM ONTHMH3AIHH,
M3BECTHOH Kak 3ajaya packpos M ymakoBku. SPP 3axirodaercs B pasMmelleHHM 3aJaHHOro Habopa MIapoB C 3aJaHHBIMU
paaMycaMy B KOHTEHHepe NpaBIWIbHON WM HENPAaBUIBHOH reoMeTpudeckoil Gopmbl. 3agada, KOTOPYIO HEOOXOAUMO PEIIHTb,
COCTOMT B TOM, YTOOBI: MCCIIEIOBATh MATEMAaTHYECKUE MOJENU JBYX IOCTaHOBOK B COOTBETCTBUM C KiaccH(UKaluen 3anad
packpos ¥ yIakoBKu: 3a/1auu o prok3ake (KP) u 3amaun ¢ nepemenHsM pazmepom (ODP); mocTponTs MaTeMaTHIeCKyl0 MOJIEIb,
MO3BOJLIIOILYIO pernTh 3a1auy KP kak 3amauy ODP. Mcnone3yemsie MeTonsl: MeTol phi-pyHKIMH, yBeIMdeHHe pa3MEepHOCTH
3ajauy, roMoTeTHdeckue npeoOpaszoBanusd. 3azada KP dopmynupyercs kak cMellaHHas 3ajada JUCKPETHO-HEIPEPhIBHOIO
nporpamMupoBanus. IIpeiaraerca HOBBIM noxxon, B KoTopoM pemeHue 3agaud KP cBomures k pemenuro 3azaun ODP s
YIIAKOBKM HEPaBHBIX M PABHBIX IIApPOB B KOHTEIHEpE C NEPEMEHHBIM KOI(P(UIMEHTOM I'OMOTETHH M KOTOPBIH I103BOJISET
HCHOJIB30BaTh jump-ayuroput™ st 3agadn KP. C oroit nensto 3amaya KP 11a nanHOoro Habopa 1mapoB IpeJICTaBIACTCA B BUIE
3a7audl HEJIMHEHHOro HPOrpaMMHpPOBAHUs, B KOTOpOH KO3(Q{QHUIMEHTa IOMOTETHH BBICTYNIAET B KauecTBE HE3aBHCHMOM
MIEPEMEHHO}, OorpaHudYeHHON cHU3y. Koa(d¢uimeHT roMoTreTHy, paBHbI EIUHMIE, COOTBETCTBYET HCXOIHOMY pa3Mepy
koHTeiHepa. IIpencrasiiena rpaduueckas muroCTpanus mporecca onTuMu3auy. Beisoabl. IpeioxkeHHbIi TOAX0] ABISETCS
METOJIOJIOTMYECKO OCHOBOM 1 pemenus 3anaun SPP. YHUBepcanbHOCTE MOAX0/A 3aKI0YAETCA B TOM, YTO PEIIECHHE 3a1a4d
SPP ne 3aBucur or ee nocraHoBku (KP wmu ODP). IMonxox npumMeHMM JUIS YHAaKOBKM HEPAaBHBIX M PaBHBIX IIapOB B
KOHTEHHepax MPON3BOJIbHBIX POCTPAHCTBEHHBIX (POPM, It KOTOPBIX MOTYT OBITH IOCTPOEHBI phi-hyHKINH.

Kamwo4ueBble cJjoBa: map; rurnepuap,; yrnakoBKa IIapoB; 3adada O PIOK3akKe; 3aJa4da C IEPEMEHHBIM Pa3sMEpPOM;
HEJIMHEWHAsI ONTUMHU3ALIHSI.
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