Advanced Information Systems. 2018. Vol. 2, No. 4 ISSN 2522-9052

UDC 621.391 doi: 10.20998/2522-9052.2018.4.13

H. Molchanov, A. Zhmaiev
National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine

CIRCUIT BREAKER IN SYSTEMS
BASED ON MICROSERVICES ARCHITECTURE

The subject of the article is a review of Circuit Breaker pattern in systems based on microservices architecture. The
purpose of the article is to analyze the advantages and disadvantages of Circuit Breaker for microservices. Results. The
precise way that the circuit opening and closing occurs is as follows: assuming the volume across a circuit meets a certain
threshold; and if the error percentage exceeds the threshold error percentage; then the circuit-breaker transitions
from closed to open; while it is open, it short-circuits all requests made against that circuit-breaker. After some amount of
time, the next single request is let through (this is the half-open state). If the request fails, the circuit-breaker returns to
the open state for the duration of the sleep window. If the request succeeds, the circuit-breaker transitions to closed and the
logic in 1 takes over again. Conclusions. Circuit Breaker has been reviewed and explained. This pattern is emerging as
essential for the reliability, ease of access, and flexibility of MSAs. Since microservices is in its early development, we can
expect more patterns like this to appear in the future. It is interesting that it is structural, in the sense that they do not change
the operations that services offer. Being of this nature, their implementations benefit from parametricity to achieve
reusability. However, their adoption also makes MSAs more complicated, and they influence the communication structures
that will be enacted in a system. This suggests that methods for the programming and verification of communications
among services should keep patterns such as these into account.

Keywords: microservices; Circuit Breaker; Hystrix, software; hardware.

Introduction

Systems based on microservices architecture
(MSA) are becoming more and more popular in modern
IT environments. Integration of different components is
an integral part of any system. Almost all systems,
which perform anything useful for a given business,
need to be integrated with one or more third party
component. But this integration also presents huge
challenges with respect to the performance of the
overall integrated system. With MSA, where a number
of services are broken down based on the services or
functionality these microservices offer, count of touch
points increase. = While connecting to other
microservices (within the same bounded context or of
some remote, external system), a lot of things can go
wrong. Microservices being connected to may be slow
or down. If our system is not designed to handle this
scenario gracefully, it can have an adverse impact on the
performance and stability.

Base material

Even the most reliable services will eventually fail,
if it given with enough number of incoming requests.
What makes it even more complicated is that, in
MSA [6], a failing service probably has other services
that depend on it. If we do not properly manage this
failure event, we have a risk of a cascading failure.

The Circuit Breaker pattern [1-5] is aimed at
preventing the failure of a single component to cascade
beyond its boundaries, and thereby bring the entire
system down with it. So, when a service becomes
unresponsive, its invokers should stop waiting for it and
start dealing with the fact that the failing service may be
unavailable. As a result, Circuit Breakers contribute to
the stability and resilience of both clients and services:
clients limit their waste of resources on trying to access
unresponsive services, and overloaded services are
given a chance to recover by finishing some of the tasks

they are currently processing. Circuit Breaker works by
wrapping calls towards a target service and monitoring
their failure rates. The idea is that when the target
service becomes too slow or replies too often with
faults, the Circuit Breaker will trip and future
invocations from the client will immediately return a
fault. More specifically, the pattern can be implemented
as a finite-state machine, depicted in Fig. 1.

—+] Closed
v b

open

Sucecs

try one request

fast faling
Half-open ‘

fad open chrcult l {

SULCESS, Close CHEUR

Fig. 1. Circuit Breaker State Diagram

We describe these states as the following.

Closed: Requests are passed to the target service.
Faults caused by the requested operation such as
exceptions or timeouts increase the Circuit Breaker's
respective failure and timeout counters. When these
counters exceed a specified threshold, or when another
predefined criterion is met, the breaker is tripped and
transitions into the open state.

Open: Requests are not passed to the target
service. Instead, a failure message is immediately given
to the client as reply. Potential fallback mechanisms can
be called to handle the failure. The Circuit Breaker can
transition to the half-open state, either by periodically
pinging the service to check for when it becomes
responsive again, or after a specified amount of time.

Half-Open: While in this state, a limited number of
requests are allowed through to the service. If the target

74

© Molchanov H., Zhmaiev A., 2018



ISSN 2522-9052

CyuacHi inpopmaniiini cuctemu. 2018. T. 2, Ne 4

service sends back successful replies, the Circuit
Breaker is reset back into the closed state as well as its
failure and timeout counters. However, if any of the
requests fail while in the half-open state, the Circuit

Table I — Circuit Breaker Parameters

Breaker transitions back into the open state. The state
transitions for Circuit Breakers are generally controlled
by a set of parameters, which typically includes those
described in Table 1.

Parameter

Description

callTimeOut

timeout the client request after N seconds without a response from the server

rollingWindow

monitor errors over a rolling window of N seconds

tripTreshold

open the circuit if the error rate gets > N%

resetTimeOut

attempt to reset the circuit after N seconds of opening the circuit

One of the most famous implementations of
Circuit Breakers is provided by the Hystrix [2]. It is a
library that helps you control the interactions between
distributed services by adding latency tolerance and
fault tolerance logic. Hystrix does this by isolating
points of access between the services, stopping
cascading failures across them, and providing fallback
options, all of which improve your system's overall
resiliency. Hystrix evolved out of resilience [11]
engineering work that the Netflix API team began in
2011. In 2012, Hystrix continued to evolve and mature,
and many teams within Netflix adopted it. Today tens of
billions of thread-isolated, and hundreds of billions of
semaphore-isolated calls are executed via Hystrix every
day at Netflix. This has resulted in a dramatic
improvement in uptime and resilience.

The Fig. 2 shows what happens when you make a
request to a service dependency by means of Hystrix.

The first step is to construct a command object to
represent the request you are making to the dependency.
Pass the constructor any arguments that will be needed
when the request is made.

There are four ways you can execute the
command, by using one of the following four methods
of your Hystrix command object (the first two are only
applicable to simple Hystrix Command objects and are
not available for the HystrixObservableCommand):

{ constructa HystrixCommand J @ «0f HystrixObservableCommand '

| execute{ ) | | .queuef } | I .observe( } I |.100h5ervanlec)

resultis) of the command. Note that they all ultimately

@ Then, choose one of the above methods to obtain the
depend on .toObservable( |

Legend:

invoke path —————»
4——return path

available in
cache?

yes; return cached response

e cxecute() — blocks, then returns the single
response received from the dependency (or throws an
exception in case of an error):

e queue() — returns a Future with which you can
obtain the single response from the dependency

e observe() — subscribes to the Observable that
represents the response(s) from the dependency and
returns an Observable that replicates that source
Observable

e toObservable() — returns an Observable that,
when you subscribe to it, will execute the Hystrix
command and emit its responses

If request caching is enabled for this command,
and if the response to the request is available in the
cache, this cached response will be immediately
returned in the form of an Observable. When you
execute the command [12], Hystrix checks with the
circuit-breaker to see if the circuit is open.

If the circuit is open (or "tripped") then Hystrix
will not execute the command but will route the flow to
(8) Get the Fallback.

If the circuit is closed, then the flow proceeds to
(5) to check if there is capacity available to run the
command.

If the thread-pool and queue (or semaphore, if not
running in a thread) that are associated with the
command are full then Hystrix will not execute the com-

++{ calculate circuit health

TEPOM MBIFICS ==eesssssrmmnesssmssnnn s nnnnns

semaphore
i Thread pool
rejected?

or run{ }

yes
shortcircuit reject

execution
fails?

G getFallback{ } or
resumeWithFallback{ }

no

fallback

x

observable:
successful error
items emitied  compietion

©00—|—*%—>

| Hystrix[Observable]Command method |

;®—®—®—|—yes; return fallback

HO—O—O—I—no;-re(um resulting Observable

; failed or not implemented.

successful?,

Fig. 2. Hystrix Flow chart

75

yes—C  timeout? rerveesnns



Advanced Information Systems. 2018. Vol. 2, No. 4

ISSN 2522-9052

mand but will immediately route the flow to (8) Get the
Fallback.

Hystrix reports successes, failures, rejections, and
timeouts to the Circuit Breaker, which maintains a
rolling set of counters that calculate statistics.

It uses these stats to determine when the circuit
should "trip", at which point it short-circuits any
subsequent requests until a recovery period elapses,
upon which it closes the circuit again after first
checking certain health checks.

Hystrix tried to revert to your fallback whenever a
command execution fails: when an exception is thrown
by construct() or run() (6), when the command is short-
circuited because the circuit is open (4), when the

— e, sleep is passed. Allow | request (return troe on | theead] —

T

Ma
remm oag

es
circuit is open

¥

HyserimCammand

allowRequest(} Mo, reourn false

- IsOpen{] (failure}  (success+faillure] = % of errars . % = threshald, trip ciecuin, retuen trie, else falsp,. ————
Get latest bucker and increment "suceess” or "larent ——0———————

command's thread pool and queue or semaphore are at
capacity (5), or when the command has exceeded its
timeout length.

Write your fallback to provide a generic response,
without any network dependency, from an in-memory
cache or by means of other static logic.

If you must use a network call in the fallback, you
should do so by means of another Hystrix command.

If the Hystrix command succeeds, it will return the
response or responses to the caller in the form of
an Observable.

Interaction of Hystrix commands with Hystrix
Circuit Breaker and its flow of logic and decision-
making is shown in the Figure 3.

| markFzilura{durarian)

|

D Emamn If isQpan() Chose Circwit and Feset Counters

Ger laresr hucker and increment "ailore”

Success 23 47 26 44 35 42 L] 46 349 12
Failure a a8 4 g 4 B " B 3 1 -
Tirreout a 1 a 4 2 7 B 2 B ] ™
Reyecrion a a 1] o o o 1 o o o
10 |-secend "buckets” |
a7 26 4B 3B 42 53 46 53 45
8 4 # 4 & 1" 5 3 6 I
1 Lt} 4 2 i 2 g 2 ]
L] o L] a a 1 a a a o

Orn "getlateseBucket” if the |aecond window is passed a new bucket is created, the rest slid ower and the oldese one dropped.

Fig. 3. Interaction with Hystrix Circuit Breaker

The precise way that the circuit opening and
closing occurs is as follows:

1. Assuming the volume across a circuit meets a
certain threshold

2. And if the error percentage exceeds the
threshold error percentage

3. Then the
from closed to open.

4. While it is open, it short-circuits all requests
made against that circuit-breaker.

5. After some amount of time, the next single
request is let through (this is the half-open state). If the
request fails, the circuit-breaker returns to the open state
for the duration of the sleep window. If the request
succeeds, the circuit-breaker transitions to closed and
the logic in 1 takes over again.

circuit-breaker transitions

Conclusions

Circuit Breaker has been reviewed and explained.
This pattern is emerging as essential for the reliability,
ease of access, and flexibility of MSAs. Since
microservices is in its early development, we can expect
more patterns like this to appear in the future. It is
interesting that it is structural [13], in the sense that they
do not change the operations that services offer. Being of
this nature, their implementations benefit from
parametricity to achieve reusability. However, their
adoption also makes MSAs more complicated, and they
influence the communication structures that will be
enacted in a system. This suggests that methods for the
programming and verification of communications among
services should keep patterns such as these into account.

76



ISSN 2522-9052 CyuacHi indopmaniiini cucremu. 2018. T. 2, Ne 4

REFERENCES

1. Lightbend. Akka's Circuit Breaker Pattern (2018), vailable at: http://doc.akka.io/docs (last accessed August 20, 2018).
. Netflix Hystrix (2018), available at: https://github.com/Netflix/Hystrix/wiki/How-it-Works (last accessed August 21, 2018).

3. Martin Fowler. Circuit Breaker (2018), available at: https://martinfowler.com/bliki/CircuitBreaker.html
(last accessed August 21, 2018).

4. Michael T. Nygard (2007), Release It! , 326 p., ISBN: 978-0-9787-3921-8.

5. Cloud design patterns by Microsoft (2018), available at: https://docs.microsoft.com/en-us/azure/architecture/patterns/circuit-
breaker (last accessed August 30, 2018).

6. Sam, Newman (2015), Building Microservices, O'Reilly Media, Inc., 282 p.

7. Matthias, K. and Kane, S.P. (2015), Docker: Up & Running, O'Reilly Media, Inc., 230 p.

8. Nicola, Dragoni, Saverio, Giallorenzo, Alberto, Lluch-Lafuente, Manuel, Mazzara, Fabrizio, Montesi, Ruslan, Mustafin and
Larisa, Safina (2016), Microservices: yesterday, today, and tomorrow. CoRR, abs/1606.04036, 322 p..

. Fowler, M. and Lewis J. (2014), Microservices, ThoughtWorks, 185 p.

10. Little M. SOA versus microservices? (2018), available at:
http://www.infoq.com/news/2015/02/special-microservices-mark-litle (last accessed at August 21, 2018).

11. Hystrix and resilience (2018), available at: http:/callistaenterprise.se/blogg/teknik/2017/09/11/go-blog-series-partl 1/ (last
accessed August 21, 2018).

12. Gentle introduction to Hystrix (2018), available at: https://dzone.com/articles/gentle-introduction-to-hystrix-hello-world

(last accessed August 21, 2018).

13. Structural design patterns (2018), available at: https://sourcemaking.com/design_patterns/structural patterns

(last accessed August 21, 2018).

Received (Hapniiinmna) 21.09.2018
Accepted for publication (ITpuitasita mo apyky) 14.11.2018

Circuit Breaker y cncremax, mo 0a3yloThcsi Ha MiKpocepBicHiii apxiTekTypi
I'. I. Momuanog, A. 1O. XKmaer

IIpeamer cTaTTi — HOCHIIHKEHHS MOXIMBOCTI BUKOpHcTaHHA mnatrepHy Circuit Breaker y cucremax, 1o 6a3ytoTbest Ha
MiKkpocepBicHiii apxitextypi. MeTor0 € aHaii3 nepear ta Henoinikis narrepHy Circuit Breaker st mikpocepsicis. Pesyiabrarn.
Crnoci6 3acrocyBanns Circuit Breaker momnsrae B HacTymHOMY: HPHITYCKAa€MO, IO T'YYHICTh B JIAHIO31 BIJIIOBIZA€ NEBHOMY
HOPOTY; SIKIIO BiJICOTOK IIOMHJIOK IEPEBUIIYE BiJICOTOK MOPOroBOi IIOMMJIKH, TO aBTOMAaTHYHMII BHUMHKAad IEPEXOIUTH i3
3aMKHYTOrO B PO3IMKHYTHH pexuM. IToku BiH pO3IMKHYTHH, BiH 3aMHKa€ BCi 3alWTH, 3pOOJIEHI A0 LBOr0 aBTOMATHYHOTO
BUMUKa4a. Yepes neskuil yac HACTYIMHUH OAMHOYHHIN ITOBTOPHUH KBECT MPOITYCKA€ThCs (11€ HalliBBIIKPUTHH cTaH). SIKIIO 3amuT
HE BUKOHYETBCS, aBTOMaTUYHMII BUMHUKA4 BEPTA€ThCA B PO3IMKHYTHIl CTaH Ha 4ac OUiKyBaHHS. SIKIO 3aIUT BHKOHYETHCS
YCIIIIHO, TO aBTOMATHYHUI BUMHKaU NIEPEXOJUTH B 3aMKHYTHH pexuM. BucHoBok. [lociikena Ta 00rpyHTOBaHAa MOMXJIUBICTD
BukopucranHs mnarrepHy Circuit Breaker mnpu po3poOui NporpamMHUX KOMIUIEKCIB 3 BHMKOPHCTAHHSAM MiKpOCEPBICHOI
apxitektypu. Lleii narTepH € Haa3BMYaliHO BaXJIMBUM Uil 3a0e3NEYEHHS HaJiHHOCTI, JErkocTi IOCTYIy Ta THYYKOCTI
MIKpOCEpBICiB, IO PO3pOOISIIOTHCS. BajkiuBo, IO Iie CTPYKTYPHMI HaTTepH, ajpke BiH HE BIUIMBAE€ Ha (YHKIIOHAJIbHI
MOJMUIMBOCTI, 10 HAJAlOTh CepBiCH. BiAmnoBinHO 0 CBOET NMpUpoOaM BiH JO3BOJIAE AOCAITH 0araTopasoBOr0 BUKOPHCTAHHS
3aBJIIKM apaMerpu3auii. B Toit xe gac, ne poduts MSA 0iibll CKIaHOIO, @ KOMYHIKaLiiHI CTPYKTYpH, sKi OyZyTh BBEJIICHI 10
CHCTEeMH, MOXKYTb HiJUIraTé JeskuM 3MiHam. Lle cBiguuTh npo Te, 1o, OOMparOdd METOIM NPOrpaMyBaHHS Ta IEPEBipKU
KOMYHIKallilf MiX cepBicamH, Ha eTali JAW3aiiHy pilIeHHs HeoOXiZHO OpaTu 10 yBaru, IO BUKOPHUCTOBYETHCS CaMe TaKHid
narrepH, sk Crcuit Breaker.

KawuoBi ciaoBa: mikpocepgic; Circuit Breaker; Hystrix, nporpamue 3a0e3nedeHHs; anapaTHe 3a0e3eueHHsL.

Circuit Breaker B cucTeMax Ha 0CHOBE MHKPOCEPBHCHOI apXHTEKTYpPhI
I'. 1. Monuasnos, A. 10. XXmaes

IIpeamer cTaThH — HCCIe0BaHKE BO3MOXKHOCTH Hcronb3oBanus natrepHa Circuit Breaker B crucremax, OCHOBaHHBIX Ha
MHKpocepBHCHOW apxutektype. Lleablo sBiseTcss aHanu3 mnpeuMyiiectB M HejpocraTkoB marrepHa Circuit Breaker mis
MHKpocepBucoB. PesynbraThl. Crioco6 npumenenus Circuit Breaker 3akitouaercst B cieyromeM: NpearonaraeM, 4To FpOMKOCThb
B IIEIIM COOTBETCTBYET OIPEACICHHOMY IIOpOrYy; €CIIM IpPOLEHT OIIMOOK IPEBHIAET IPOLEHT IIOPOroBOH OIIUOKH, TO
aBTOMATHYECKUH BBIKIIIOYATENb HNEPEXOIUT M3 3aMKHYTOrO B Pa3OMKHYTHIH pexuM. [loka OH pa3oMKHYT, OH 3aMbIKaeT BCe
3aIpoCkl, CIeTaHHbIe K 9TOMY aBTOMAaTHUECKOMY BBIKIIOUaTelto. Uepes3 HeKOTopoe BpeMst CIIe YOI OJJMHOYHBIN TIOBTOPHBIN
KBECT TIPOITyCKaeTcsi (3TO IOJIYOTKPBITOE cocTosHKE). Ecim 3ampoc He BBINONHSETCS, aBTOMATHUECKUH BBIKIIOYATENb
BO3BpaIaeTcss B Pa3OMKHYTOE COCTOSIHUE Ha BpeMsi OKuAaHWs. Eciy 3ampoc BBINONHSETCS YCIEIIHO, TO aBTOMAaTHYECKHUId
BEIKJTIOUATEIb NIEPEXOANT B 3aMKHYTHIN pexxnM. BeiBoa. VccienoBana m 0600cHOBaHAa BO3MOXKHOCTh HCIIOJIb30BAHUS MMATTEpHA
Circuit Breaker npu pa3paboTke nporpaMMHBIX KOMIDIEKCOB C MCIOJIB30BAHHEM MHUKPOCEPBUCHOH apXUTEKTYpHl. DTOT MaTTepH
SIBJISICTCS. UPE3BBIUAIHO BAXKHBIM JUISI OOECIEUYEHHS HAaIEKHOCTH, JIETKOCTH JOCTylla W THOKOCTH pa3pabaThiBacMBIX
MHUKpocepBrcoB. Bakno, uyto Circuit Breaker sBisiercss CTPYKTYPHBIM IATTEPHOM M HE BIMSET Ha (DYHKIMOHAJIBHEIE
BO3MOXXHOCTH, KOTOpBIE TIPEJIOCTABIISIIOT CEPBUCHL. B  COOTBETCTBMM CO CBOEH CYIIHOCTBIO, OH IIO3BOJISIET JIOCTHYb
MHOT'OKPAaTHOTO HCIIONIB30BaHMS Ojarojapsi mapaMmerpuzaimu. B To ke Bpems, 9to gemaer MSA Oonee CIOXHOH, a
KOMMYHHKAI[HOHHBIE CTPYKTYpPBI, KOTOpbIe OYIyT BBEICHBI B CHCTEMY, MOTYT IIOJJIEKAaTh HEKOTOPHIM H3MEHEHHUSM. OJTO
CBHJETENIBCTBYET O TOM, YTO, BBEIOMpAsi METO/BI IPOrPaMMHPOBAHKS M TIPOBEPKH KOMMYHHUKALMH MEXIy CepBUCAaMH, Ha dTarle
I3aliHa peleHnst HeoOX0IMMO IPUHUMATh BO BHUMAaHHE, YTO HCIIOIb3YeTCss IMEHHO Takoi narrepH, kak Crcuit Breaker.

KawueBsie caoBa: mukpocepsuc; Circuit Breaker; Hystrix; mporpammuoe obecrieuenue; 000pynoBaHue.

77



