
Advanced Information Systems. 2018. Vol. 2, No. 2 ISSN 2522-9052

 94

Methods of information systems protection
УДК 651.34 doi: 10.20998/2522-9052.2018.2.16

I. Mamusiĉ 1, D. Lysytsia 2, А. Lysytsia 2

1 University of Zagreb, Zagreb, Croatia
 2National Technical University "Kharkiv Polytechnic Institute", Kharkiv

MODEL OF DATA PREPARATION FOR ALLOCATION OF ALGORITHM
FROM BINARY CODE FOR THE SAFETY ANALYSIS OF THE SOFTWARE

The subject of the study in the article is the use of technology of recovery of the algorithm for the allocation of binary
attractors in the machine-independent form for the safety analysis of the software. The purpose is the first stage of the
method of allocation of the algorithm from the binary code with the use of additional attractors - preparatory, which
includes the task of allocating a set of attractors with simillar features and synthesis of information about the studied
system. The following results are obtained. During the cource of the research the analysis of specialized simulators was
performed. Such simulators allow to solve the problems of allocation (removal) of some algorithms from binary code. It
was determined that additional attractors of the binary code of the program are required in order to increase he accuracy of
software security testing. The general structure of the algorithm extraction from binary code is presented. A set of
algorithms were developed. Conclusions. When combined they create the model of the first stage of data allocation of the
algorithm from binary code for the analysis of software security. The key feature of development of this stage is the
possibility of constructing a graph for arbitrary attractors, without restriction of the static nature of the code. This will allow
a significant expansion of the spectrum of the program code under investigation, including codes with signs of a dynamic
change. The further development of this research is to study the whole scheme and develop an appropriate method for
allocating a binary code algorithm for software security analysis.
Keywords : software security testing; binary attractor; ethical hacking.

Introduction
Formulation of the problem. An analysis of

recent world-wide events related to information security
has shown that virtually every modern IT structure has
certain vulnerabilities to cyberattacks. At the same time,
there is a certain tendency to increase cyberattacks that
have succeeded in their malicious purpose. In the
opinion of the authors, this is largely due to the lack of
attention to the testing of software security (SOA), as
well as the discrepancy in opinions of software
developers of the very essence of the term and functions
of software security testing.

The analysis of popular information sources on the
Internet [1, 2, 4, 6] showed that most authors connect
the issue of software security testing to the purpose of
finding and neutralizing existing risks which present a
clear threat to the quality functioning of computer or
computerized systems of various purposes.

It is stated that the basic principles of software
security are confidentiality, integrity and accessibility
[5].

Without diminishing the importance of these
principles and without limiting the main strategic goal of
software security testing indicated in these sources, it
should be noted that some software development
organizations, when testing security, focus only on
known external factors and simulate various situations
that use, for example, the same methods of hacking [2,4]:

 attempts to find out the password using
external means;

 attacking the system using special tools that
analyze software protection;

 suppression, overloading of the system (with
the assumption that it will refuse to serve other clients);

 purposeful introduction of errors in the hope of
penetrating the system during the recovery;

 reviewing and analyzing unclassified data in
hopes of finding a key for logging into the system.

But at the same time, due to some objective and
subjective reasons, testers often ignore the wide
possibilities of reverse engineering technology,
unfortunately. At the same time, in opinion the authors,
some of these technologies can significantly improve
the quality of software security testing, reduce the risk
of successful cyberattacks, and generally improve the
information security.

One of such technologies is the technology of
recovery of the algorithm for the allocation of binary
attractors in the machine-independent form [3, 9]. This
technology helps to solve complex issues of search for
non-declared features of the software (mostly malicious
ones), as well as errors in implementation and detects
the malicious code (computer virus), etc.

The analysis of literature [7, 8, 10] showed that
at present times there are a number of specialized
simulators which allow solving the issues of selection
(removal) of some algorithms from binary code. But
these programs mostly reaserch only that part of the
program that is used during the launche of the analysis
process and leave certain "traces" - attractors. An
increase in the volume of the researched code is
possible with the use of additional code execution
attractors, which combine more application execution
scenarios.

This determines the actuality of developing a
method for allocating an algorithm from a binary code
using additional attractors for software security analysis.
The overall structure of the allocation of the algorithm
from the binary code is schematically presented in fig. 1.

© Mamusiĉ I., Lysytsia D., Lysytsia А., 2018

ISSN 2522-9052 Сучасні інформаційні системи. 2018. Т. 2, № 2

 95

Studies conducted [3, 6] have shown that when
analyzing simple programs it is often enough to apply
the procedure once. In complex cases, it should be
applied iteratively.

As can be seen on the picture, the restoration of the
algorithm begins with the preparation of the initial data
and the allocation of a set of attractors with simillar
features. Then follows a synthesis of information about
the researched system from source attractors using the
graph approach of representation in the system. After
that, the code is exported to a machine-independent
representation on the basis of the part of the code that
relates to the investigated algorithm. During this
operation, optimization solutions are used to simplify
the received presentation and, finally, the result is
presented in a form suitable for viewing by the analyst
and using in the decision support system which uses
artificial intelligence. During this moment, the analyst
takes a decision whenever the next iteration of the
analysis sould be performed.

Fig. 1. Scheme of algorithm allocation

In the article we will review the first stage of the

method of allocation of the algorithm from the binary
code with the use of additional attractors - preparatory,
which includes the task of allocating a set of attractors
with simillar features and synthesis of information about
the studied system.

1. Selection of attractors set
with simillar features

A binary attractor of execution, obtained using an
attractor simulator (hereinafter - just attractor),
represents a sequence of steps. Each step contains the
code for the executed instruction and the value of some
of the main registers before it is executed.

Due to the full-system nature of the formation
attractors contain actions regarding all programs active
in the system during removal of attractors, including the
kernel and other components of the operating system. It
is assumed that the attractor steps according to their
belonging to different processes and execution threads.
In this case, the low-level components of the operating
system, such as interrupt handlers, must be matched
with separate processes and / or execution threads. The

symbols associated with attractors, steps, instructions,
and auxiliary data are summed-up in the table 1.

It should also be noted that sets read [t(i)] and
write [t(i)] are associated with attractor's step, not the
instruction, i.e. they may differ for different values of
operands. Size attributes and attributes of belonging to a
class of control instructions, on the contrary, are
constant for a given instruction.

In addition to the set of attractors, which describes
some of the scenarios of the behavior of the researched
program, for analysis, the information on how these
attractors correlate with each other is needed. In the
framework of the proposed method, the relations are
given using the following definitions:

Table 1: Key notation for the attractor

Notation Description

 len t ;
 it

Number of steps in the attractor t ; step to the

attractor t with the number   1,i len t

 iaddr t 
  

;

 iinst t 
  

Address that was executed on the step  it of
instruction; instruction which was executed

on the step  it
 iprocess t 

  

 ithread t 
  

Process ID on step  it ;

Run Flow Id on step  it

 iread t 
  

;

 iwrite t 
  

A set of memory addresses that are read on

step  it ; a set of memory addresses written

on step  it

 size j ;

 branch j

The size of the bytes of the instruction code
j ; Idnetifier of whenever instruction j is

the control transmission.

Under the related attractors we mean the set of

attractors obtained from the same initial state of the
system (i.e., from the same image of the state of the
simulator).

Such attractors will differ by scenarios they have
been implemented in the analyzed system, which, in
turn, is determined by the input data. In the case of
interactive applications, the input data can be considered
a sequence of actions in the graphical interface.

The basic initial data for the proposed algorithm
restoration procedure, thus, will be a set of related
attractors.

2. Synthesis of related attractors
The first step in the procedure for restoring the

algorithm is to combine a set of related attractors into a
general  ,G V C representation-oriented graph with
loops, corresponding to the set of interprocedural graphs
of the flow of control of individual execution streams
with additional marks. In the general, when attractors
include multiple threads of execution, this graph will be
unconnected, and each flow of execution will match its
component of connectivity.

In the graph G, as in the usual control flow graph,
the vertices V correspond to the base blocks (the linear
sections of the code of this execution thread), and the

Advanced Information Systems. 2018. Vol. 2, No. 2 ISSN 2522-9052

 96

edges C are possible control transmissions between
these parts. Since in the proposed approach the only
source of knowledge about the control flow of the
program is its attractors, the graph will include only
those edges whose transitions were actually observed.

In addition to the usual vertices of the base blocks,
for each flow of execution in the graph G are defined
those which are guaranteed not to contain any
instructions incoming and outgoing vertices, the first of
which is dominant, and the second post-dominate over
all other base blocks of this execution flow.

At each vertex are stored: initial address, sequence of
instructions and generation number. Generation number is
an integer that represents the state of the code of the
program and allows you to correctly represent the code that
is changed during execution. Within each separate flow of
execution, the generation number will increase by one
when rewriting the code of the given stream. The symbols
to be used further are given in table 2.

Table 2. Key notation

Notation Description

 Tentry G ;

 Texit G

The input vertex of the flow of execution T in
the graph G; output vertex of the flow of
execution T in the graph G

 start B ;

 end B ;

 insn B ;

 gen B

Primary address of the base unit B ;
the address of the end of the base unit B , not
enabled;
sequence of instructions in the base unit B ;
generation number of the base unit B

 succ B ;

 pred B

The set of base blocks in which the edges of
B ; the set of base blocks from which the edges
B start

 from e ;

 to e

The basic block from which the edge e starts;

base unit, to which an edge e leads

he address of the end of the base unit  end B is
calculated on the basis of  start B and  insn B :

      j insn Bend B start B size j  .

In addition to the symbols from the table 2, in the
pseudocode of the following algorithms the following
functions will be considered available, the
implementation of which depends on the selected
method of storing the graph.

1. F1 function creates and returns a new empty
graph.

2. The function F2 (G, T, n, a) creates a new base
unit in the graph G belonging to a generation with the
number n of the runtime T, and assigns it the initial
address a. The list of instructions for the newly created
base unit is initially set to blank. The address a may
have a special meaning, that corresponds not to the
addresses of the start and end vertices.

3. Function F3 (G, B) removes the base unit B
from graph G along with all edges adjacent to it.

4. The function F4 (G, T, n) returns the ordered
list of base generators with the number n of the flow of
T in the graph G.

5. The function F5 (G, T, n, a) finds the base unit
B in the graph G, which belongs to a generation with the
number n of the runtime T, such that it belongs to the
address a: . If no such block is found, a special value is
returned.

6. The function F6 (G, B, a) produces the division
of the base unit B into two so that part of the
instructions B, whose addresses are smaller than the
address a, fall into the first block, and the rest - in the
second. The address a must belong to the base block B.
The function returns a pair of received blocks, where the
addresse b is less than a, and b - more or equal.

7. Function F7 (G, B, B ') connects the base
blocks B and B' in the graph G by the edge. If such an
edge already exists, then the new one is not added. The
function F8 (G, T, n) returns an unregulated set of edges
connecting base generating units with the number n of
the flow of T in graph GIf only one of the incident
edges of the base blocks belongs to a given generation,
and the second one is not, then such an edge is not
included in the set of returned.

If this set is empty, then a graph is empy as well.
The graph has the following properties.

1. Each component of the connectivity describes
the flow of control of one flow of execution.

2. Each edge connects either one-generation base
units or from a base unit with a lower generation
number to a base unit with a larger.

3. Within a single generation, one flow of
execution, the base units do not intersect at the
addresses. When a control is found in a given
generation, there is no overwrite of executable code. In
aggregate, this means that within a single generation of
one stream of execution, the method of static analysis is
applied without change

4. The transformation of graph G, squeezing
within each component of the connection all the vertices
with the same generation number into one vertex,
allows us to obtain an acyclic graph describing the code
modification episodes in each flow of execution. Such a
graph will be called an evolution graph. The type of
evolution graph allows you to get an idea of the nature
of the code transformations carried out in the system of
the language being studied. The number of vertices and
/ or edges in it can be considered one of the metrics of
complexity of the system.

Further, we describe the algorithms that implement
the initial construction of the representation G on the
first iteration of the procedure for the restoration of the
algorithm and its replenishment in subsequent iterations.

Firstly, let's review the simplified situation, when
in the processed attractor there is no modification of the
code in the process of execution. This situation is
possible in practice, when the attractor presents the
work of the main part, mostly unprotected by the
mechanisms of self-modification of the program:
loading the program image and dynamic libraries has
already been carried out and carried out the binding of
all the functions used.

The pseudo code for the "static graph restoration"
algorithm is shown on fig. 2. The algorithm receives at
the input of the attractor t and issues the graph G for it

ISSN 2522-9052 Сучасні інформаційні системи. 2018. Т. 2, № 2

 97

at the output. For each execution stream, the method
called "continue the static reproduction of the graph" is
called (fig. 3).

1: function Static graph construction (t)
2: G  F1

3: for     


tlen

i

itthreadT
1

 do

4:   TGentry F2 (G , T , 1, 0)
5:   TGexit F2 (G , T , 1, 0)

6: E  Static graph construction funiculus (t)
7: G  F1
8: (G ,  TGentry , t , 1,  tlen , T , 1)
9: F7 ( TGexitEG ,,)
10: end for
11: return G
12: end function

Fig. 2. Pseudo-code for the algorithm
 of "static graph creation"

1: function Static graph construction funiculus (G ,
S , t , a , b , T , n)

2: SE  ; 0m
3: for baai ,...,1,  do
4: if    Ttthread i  then
5: if 0m then
6: B  F5    itaddrnTG ,,,
7: if 0B then
8: B  F2    itaddrnTG ,,,
9: 1 ii
10: else if  Bstart    itaddr then
11:  BB , F6 (G , B ,   itaddr)
12: end if F7 (G , T E , B)
13: ;BE    1 Binsnm
14: else if 0m then
15: 1 mm
16: else if 0m then
17: B F5 (G ,T , n ,   itaddr)
18: if 0B then
19:       itinsnEinsnEinsn 
20: if    itinsnbranch then
21: 0m
22: end if
23: else
24: F7 (G , E , B)
25: ;BE    1 Binsnm
26: end if
27: end if
28: end if
29: end for
30: if            EendtinsnsizetaddrSE bb  then

31: EE, F6 (G , E ,       bb tinsnsizetaddr )

32: end if
33: return E
34: end function

Fig. 3. Pseudo-code for the algorithm

"Continuation of static graph restoration"

Its parameters are as follows: G is the graph to be
built, S is the start vertex, t is the attractor, [a, b] is the

range of attractor steps considered, T is the execution
flow identifier, n is the generation number assigned to
the created base blocks.

The value of most of these parameters during the
call on the "static graph" algorithm is fixed, but they
will start to change with the addition of dynamic code
support in the algorithm. The algorithm returns the base
unit in which check was performed last.

The algorithm implements a successive passage
through the steps of the attractor belonging to the flow
of execution T. At the same time it tracks, in which base
block the execution is performed. The variable m
describes the state of the algorithm: for m = 0, in the
previous step under consideration, a control transfer
took place, or this step was first revised; When m > 0
the control is located inside a known base unit, it
remains to see m sequential instructions before it is
finished; When m < 0 the control is located inside the
base unit, it has never been seen before.

When considering the transfer of control from the
current block E, the following three situations are
possible:

1. The control is transmitted to the address of the
beginning of a known base unit B. If it does not already
exists, the edge corresponds to this transition.

2. The control is transmitted to the address in a
known base unit B, but not at the beginning. A division
of the base unit B is carried out for this address, after
which an edge E is added in the second set of the base
units received.

3. The control is transmitted to an address that
does not belong to any known base unit. Then a new
base unit B with this address is created as the start
address, an edge is added from E to B, and the
algorithm switches to the new block view mode
 0m  .

When you look at the instructions of the newly
created base unit in situation 3, each subsequent
instruction is added to its insn list. This procedure
continues until one of the following conditions for the
completion of the base unit is completed.

1. The last instruction of the flow of T in the
range of steps is revised  ,a b .

2. Revised management transfer instruction. By
definition of the base unit, this is its last instruction. The
algorithm returns to the control transfer control mode
 0m  .

The address of the next instruction corresponds to
the beginning of the known base unit B. An appropriate
edge is added, and the algorithm goes into the skip
mode of the known base unit .

Finally, when all the instructions for the flow of T
in the range of steps are revised  ,a b , if necessary,
separation of the last considered base unit E is carried
out. This need arises if the instruction of the last of the
revised steps to the attractor is not the last instruction in
insn[E]. Separation is carried out at the end of this
instruction.

Then the first of the blocks obtained after the
separation of the base units can be marked as finite,

Advanced Information Systems. 2018. Vol. 2, No. 2 ISSN 2522-9052

 98

since the flow of control at reaching its end may stop. In
addition, this property is used in the next section when
adding support for the dynamic code.

3. Dynamic code
The presence of dynamically changing code can be

caused by various reasons. Here are a few options, from
the most common and unrelated to the intentional
counteraction to the analysis, to the purposeful (creating
difficulties), especially for static analysis.

Usage of dynamic editor for linking uploads and
outloads in dynamic libraries. The address range of the
newly downloaded library can cross the address range
that was already uploaded. Thus at different periods of
time there will be a different code in the same memory
addresses.

Use of "springboards" and delayed bindings. When
you first go to the address of dynamically linked function
control can be transferred to a subroutine that performs
deferred binding. Once the binding is performed, the
routine will correct the "springboard" in such a way that
during the subsequent calls the function is called directly
and will give control to it for the first time.

The program contains mechanisms of decryption,
decompression, dynamic code generation, which
overwrite or do not require and reject fragments of the
program; or if such mechanisms work with the program
in parts, then use one rewritable buffer for the next
decrypted, unpacked or generated part of the program.

Polymorphic nature of the program or its parts.
This case differs from the previous one, because most
often the next version of the program code is based on
the previous, which further complicates the analysis.
Most often, such mechanism is embedded in malicious
code, especially in viruses, in order to prevent signature
analysis in antivirus software.

The method proposed in this article does not
distinguish the causes of the dynamic change of the
code. All possibilities are treated in the same way,
which on the one hand has the advantages of the
universality of the method, but on the other hand
ignores additional "hints" about the behavior of the
program contained in these reasons. However, a certain
idea of the nature of the dynamic code in this program
gives the evolutionary graph described above.

Regardless of the content that falls into an episode
of dynamic program code changes, it passes through
one of the following two scenarios.

The program executed on this system records the
values in memory. This memory may belong to this
program, as well as any other (for this operating system
should support the ability to connect the flow of one
process to the address space of another). Recorded
values either change the code which is already executed,
or generate code that will be executed in the future. One
way or another, the entry is made to addresses that also
appear in the attractor as being executed.

One or more pages of physical memory change as
a result of executing a DMA transaction by any
computer device (often a hard disk controller). In this
case, the attractor does not observe the fact of direct
recording, since such transactions are initiated by the

device itself, and they do not meet any instructions.
Recorded addresses, as in the first scenario, have either
been used previously or will be used later as executable.

Summarizing all of the foregoing, one can
formulate the criterion for the presence of a dynamic
code in the part of the attractor. For example, attractor t
has the range of step numbers and any process is
recorded P , and in the given segment there are steps,
belonging to P . Let's mark the set of these steps
through . We construct the following two sets:

   
PRr

r
P treadR


 ; (1)

   
PRr

r
P twriteRW


 ; (2)

         
PRr

rrr
P tinsnsizetaddrtaddrRX


 1, . (3)

As we can see the set contains all the addresses by
which the instruction was recorded in the steps , while
set - All addresses from which you selected in steps
instructions for execution. Let's assume that a known set
of virtual memory addresses is overwritten in a process
as a result of DMA transactions in the range R. We note
this set through.

In the following notation, the set will not contain
the dynamic of the code if and only if completed

         0 PPPP RXRDRWR  . (4)

In this case, the code relating to the process in the
range of steps is static and can be analyzed by methods of
static analysis. We also apply the algorithm of "static graph
creation" to the steps. The above reaserch allow us to
construct the graph "CTG" for for an arbitrary attractor,
without limitations of the static code. The full algorithm
"CTG-Full" will consist of the following two steps.

1. Split the attractor into segments of static code
in each process. At this stage, we will use a greedy
algorithm: we will build segments from smaller step
numbers in the attractor to larger ones, and each
increment will be expanded until 3 are executed.

2. Application of the algorithm "Continuation of
static graph restoration" in each received interval of
static. At the same time, with each regular segment, the
next generation number will be confirmed within this
flow of execution.

The pseudo-code for the "CTG-Full" algorithm is
shown on fig. 4, and the algorithm for splitting the
attractor into segments of the static code "CTG-Full-
Partition" on fig. 5. The CTG-Full algorithm receives
attractor t on input and outputs a graph G built for it
The "CTG-Full-Partition" algorithm returns an ordered
sequence of static segments S long the attractor t and
identifier of the process P . The segments in the
sequence do not intersect, and their association
corresponds to the entire range of steps in the attractor
t , which means S sets the breaker to the attractor t .

In some doubtful situations, the algorithm built
may require additional refinements.

Such situations are possible in programs provided
with certain types of hinged protection, as well as in the

ISSN 2522-9052 Сучасні інформаційні системи. 2018. Т. 2, № 2

 99

operating system code. Therefore, in the future there is a
need for the practical adaptation of the developed
algorithms to possible casuist deviations in the
programs.

1: function CTG-Full (t)
2: G F7

3: for    


tlen

i

itthreadT
1

 do

4:   TGentry F2 (G ,T ,1,0)
5: ;1Tn   ;TT GentryE 
6: end for

7: for    


tlen

i

itprocessP
1

 do

8: for ba, CTG-Full-Розбиття  Pt, do

9: for   
b

ai

itthreadT




 do

10: TE Static graph construction funiculus (G , TE t
, a , b ,T , Tn)

11: 1 TT nn
12: end for
13: end for
14: end for

15: for    


tlen

i

itthreadT
1



16:   TGexit F2 (G ,T , Tn ,0)
17: F7 (G , TE ,  TGexit)
18: end for
19: return G
20: end function

Fig. 4. "CTG-Full" algorithm

Conclusion
Thus, a set of algorithms for allocating a set of

attractors with related features and synthesizing

information about the investigated system was developed,
which is the first stage of the method of allocation of the
algorithm from the binary code with the use of additional
attractors.

A distinctive feature of development of this phase is
the possibility of constructing a graph for an arbitrary
attractor, without limiting the static nature of the code.
This will allow a significant expansion of the spectrum of
the program code under investigation, including codes
with signs of a dynamic change.

1: function «CTG-Full-Розбиття» (t,P)
2: 0, XW ;  S ; 1a
3: for  tleni ,...,2,1 do
4: if    Ptprocess i  then

5:     itread P
i  

6:    iDwrite P 1

7:        1,  iii tinsnsizetaddrtaddrx
8: if    0ω0   XxW then
9: ωWW 
10: else
11: ;W 1
12: iaiaSS  ;1,
13: end if
14: end if
15: end for
16: return  tlenaS ,
17: end function
Fig. 5. Algorithm for splitting the attractor

into segments of the static code "CTG-Full-Partition"

The further development of this research is to

study the whole scheme and develop an appropriate
method for allocating a binary code algorithm for
software security analysis.

СПИСОК ЛІТЕРАТУРИ

1. Абушинов О. Особенности тестирования безопасности ПО [Электронный ресурс] / О. Абушинов. – Режим доступа:
https://testitquickly.com/2010/11/20/22.

2. Дорофеев А. Тестирование на проникновение: демонстрация одной уязвимости или объективная оценка
защищенности? [Электронный ресурс] / А. Дорофеев. – Режим доступа: https://www.npo-echelon.ru/doc/inside-dorofeev.pdf.

3. Жаркова А. В. Об аттракторах в конечных динамических системах двоичных векторов, ассоциированных с
ориентациями пальм / А. В. Жаркова // Прикладная дискретная математика. – Томск, 2014. – №7. – С. 58-67.

4. Ильюк Д. Тестирование безопасности – выбираем нужное [Электронный ресурс] / Д. Ильюк. – Режим доступа:
http://software-testing.ru/library/testing/security/1986-security-testing.

5. Кузнецов О. О. Протоколи захисту інформації у комп’ютерних системах та мережах / О. О. Кузнецов, С. Г. Семенов.
– Х.: ХНУРЕ, 2009. – 184 с.

6. Семенов С. Г. Комплекс математичних моделей процессу розробки программного забезпечення / Інформаційні
технології та комп’ютерна інженерія / С. Г. Семенов, Кассем Халіфе. – Вінниця : ВНТУ, 2017. – Вип. 3(40). – С. 61-68.

7. AMD SimNow Simulator [Электронный ресурс]. – Режим доступа:
http://developer.amd.com/cpu/simnow/Pages/default.aspx.

8. IDA Pro – at the cornerstone of IT security [Электронный ресурс]. – Режим доступа:
https://www.hex-rays.com/products/ida/ida-executive.pdf.

9. Ivancevic V. G. High-Dimensional Chaotic and Attractor Systems: A Comprehensive Introduction / V. G. Ivancevic,
T. T. Ivancevic. – Springer Science & Business Media, 2007. – 697 p.

10. Magnusson P. S. A Full System Simulation Platform / P. S. Magnusson // IEEE Computer, 35(2), Feb. 2002, P. 50-58,
available at : https://doi.org/10.1109/2.982916.

11. Robert C. Seacord Secure Coding in C and C++ / C. Robert. – The SEI Series in Software Engineering, 2013. – 569 p.

Advanced Information Systems. 2018. Vol. 2, No. 2 ISSN 2522-9052

 100

REFERENCES

1. Abushinov, O. (2017), Features of software security testing, available at: https://testitquickly.com/2010/11/20/22 (last
accessed March 05, 2018).

2. Dorofeev A. (2017), Penetration testing: demonstration of one vulnerability or an objective evaluation of security, available
at: https://www.npo-echelon.ru/doc/inside-dorofeev.pdf (last accessed March 05, 2018).

3. Zharkova, A.V. (2014), “On attractors in finite dynamical systems of binary vectors associated with palm orientations”,
Applied Discrete Mathematics, Tomsk, No. 7, pp. 58-67.

4. Iljuk, D. (2017), Safety testing - choose the right one, available at: http://software-testing.ru/library/testing/security/1986-
security-testing (last accessed March 05, 2018).

5. Kuznetsov, O.O. and Semenov, S.G. (2009), Protocols of the information zahistu at computer systems on that level,
KhNURE, Kharkiv, 184 p.

6. Semenov, S.G. and Kassem, Khalifa (2017), “A complex of mathematical models for the process of disassembling software
software”, Information technology and computer engineering, VNTU, Vinnitsa, No. 3 (40), pp. 61-68.

7. AMD SimNow Simulator (2016), available at: http://developer.amd.com/cpu/simnow/Pages/default.aspx (last accessed March
05, 2018).

8. IDA Pro – at the cornerstone of IT security (2016), available at: https://www.hex-rays.com/products/ida/ida-executive.pdf
(last accessed March 05, 2018).

9. Ivancevic, Vladimir G., Ivancevic, Tijana T. (2007), High-Dimensional Chaotic and Attractor Systems: A Comprehensive
Introduction, Springer Science & Business Media, 697 p.

10. Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A. and
Werner, B. (2002), “A Full System Simulation Platform”, IEEE Computer, No 35 (2), pp. 50–58, available at :
https://doi.org/10.1109/2.982916.

11. Robert, C. (2013), Seacord Secure Coding in C and C++, The SEI Series in Software Engineering, 569 p.

Надійшла (received) 01.04.2018
Прийнята до друку (accepted for publication) 16.04.2018

Модель підготовки даних виділення алгоритму з двійкового коду

для аналізу безпеки програмного забезпечення
І. Мамузіч, Д. О. Лисиця, А. О. Лисиця

Предмет дослідження – використання технології відновлення в машинно-незалежному вигляді алгоритму по
набору двійкових атракторів для аналізу безпеки програмного забезпечення. Мета статті – розглядання першого етапу
методу виділення алгоритму з двійкового коду з використанням додаткових атракторів – підготовчого, що включає в
себе завдання виділення множини атракторів с загальними ознаками та синтез інформації про досліджувану систему.
Отримані такі результати. Проведено аналіз спеціалізованих симуляторів, що дозволяють вирішувати питання
виділення (вилучення) деяких алгоритмів з двійкового коду. Визначено необхідність дослідження додаткових атракторів
двійкового коду програми для підвищення точності тестування безпеки програмного забезпечення. Схематично
запропоновано загальну структуру виділення алгоритму з двійкового коду. Висновки. Розроблено комплекс алгоритмів,
що в цілому складають модель першого етапу підготовки даних виділення алгоритму з двійкового коду для аналізу
безпеки програмного забезпечення. Особливістю розробок цього етапу є можливість побудування графу для довільного
атрактору, без обмеження на статичність коду. Це надасть можливість суттєвого розширення спектру досліджуваних
програмних кодів, у тому числі кодів, що мають ознаки динамічної зміни. Подальший розвиток роботи полягає у
дослідженні всієї схеми та розробки відповідного методу виділення алгоритму з двійкового коду для аналізу безпеки
програмного забезпечення.

Ключові слова: тестування безпеки програмного забезпечення; двійковий атрактор; етичний хакінг.

Модель подготовки данных выделения алгоритма из двоичного кода
для анализа безопасности программного обеспечения

И. Мамузич, Д. А. Лисица, А.А. Лисица
Предмет исследования – использование технологии восстановления в машинно-независимом виде алгоритма по

набору двоичных аттракторов для анализа безопасности программного обеспечения. Цель статьи – рассмотрение
первого этапа метода выделения алгоритма из двоичного кода с использованием дополнительных аттракторов –
подготовительного, который включает в себя задачу выделения множества аттракторов с общими признаками и синтез
информации об исследуемой системе. Получены следующие результаты. Проведен анализ специализированных
симуляторов, позволяющих решать вопросы выделения (изъятия) некоторых алгоритмов из двоичного кода. Определена
необходимость изыскания дополнительных аттракторов двоичного кода программы для повышения точности
тестирования безопасности программного обеспечения. Схематически предложена общая структура выделения
алгоритма из двоичного кода. Выводы. Разработан комплекс алгоритмов, которые в целом составляют модель первого
этапа подготовки данных выделения алгоритма из двоичного кода для анализа безопасности программного обеспечения.
Особенностью разработок этого этапа является возможность построения графа для произвольного аттракторов, без
ограничения на статичность кода. Это позволит существенно расширить спектр изучаемых программных кодов, в том
числе кодов, имеющих признаки динамического изменения. Дальнейшее развитие работы заключается в исследовании
всей схемы и разработке соответствующего метода выделения алгоритма из двоичного кода для анализа безопасности
программного обеспечения.

Ключевые слова: тестирование безопасности программного обеспечения; двоичный аттрактор; этический
хакинг.

