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INCREASE THE AVIATION EFFICIENCY OF UAVs
USING ARTIFICIAL NEURAL NETWORKS

Purpose. It is known that the flight of the UAV is conducted by sensors that transmit the performance of the UAV and on
the basis of this information is controlled on the UAV and give them the orders which are necessary to perform the task of
flying UAV. and normal these faults occur during the flight of unmanned air vehicle (UAV), according to the concepts of
aviation is a very critical situation that affects the completion of the mission. These faults are mainly due to failure in the
sensors, which can be divided into. Flight Situation is about the flying situation of the aircraft, such as (heading, altitude,
airspeed, and vertical speed and angle of attack sensors. And Flight Control Situation, this is about the flight control
surfaces such as (rudder, aileron, and elevator deflection), pitch attitude, and roll attitude sensors. This paper presents an
effective technique to ensure that the sensors can operate with high efficiency. Methods. Two different approaches are
used in this work. The first approach is Neural Network (NN) based tool for the modeling, simulation and analysis of
aircraft (SFDIA), sensors failure, detection, and identification and accommodation problem. The second approach is Neural
Network trained with the (EMRAN) algorithms which is a set of conditions that decide how the (EMRAN) structure should
be adapted to better suit the training data. Results. The results from the modeling process and analysis of aircraft sensors
showed that the neural network based tool (SFDIA) and the (EMRAN) algorithms are able to show high-resolution results
in the behavior of sensors and hence in the (UAV) behavior. Conclusions. The capabilities of (SFDIA) are a consequence
of the extensive modularity of the whole simulation tool. It allows an easy change of unmanned air vehicle (UAV),
dynamics and feedback control law as well as Neural Network (NN) estimators and (SFDIA) scheme.

Keywords: Unmanned aircraft vehicle; Sensor fault detection; Fault diagnosis; Aircraft sensors modeling and

simulation.
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EMRAN - Extended Minimal Resource Allocation
Network

RBF - Radial Basis Function

1. Introduction

Unmanned air vehicle (UAV) are complex
technical systems. They are out of reach of the pilot.
But the name of this aircraft does not fully
demonstrate the way in which they are operated. They
are in fact not fully self piloted, but also need a pilot
sitting at the steering station on the ground, to
remotely control it by a wireless manner. The control
Process of the (UAV) is through signals transmitted by
sensors. In this respect comes the importance of
increasing the efficiency of sensors. Which transmit
signals back to ground stations [1]. Sensor fault in
(UAV) is detected by using two different approaches.
The first approach is Radial Basis Function (RBF) NN
trained with the Extended Minimal Resource
Allocation Network- (EMRAN) algorithms [2, 3].
The second approach, which is presented in this
Paper, is based on Knowledge based Neural Network
(NN) based tool (SFDIA) Sensor Failure, Detection,
Identification and Accommodation problem [4-5].
The tool is based on a (SFDIA) scheme in which
learning NNs are used as on-line non-linear
approximates of the analytically redundant portion of
the system dynamics [6]. This can provide validation

capability to measurement devices, allowing sensors
failures to be detected, identified and accommodated.
Research on fault tolerance based on analytical
redundancy has produced a quite mature framework
especially for linear systems [7]. But unfortunately, the
assumption of linearity is not often valid throughout
the whole flight envelope of the aircraft. Thus the
performance of a fault tolerance scheme based on such
assumption can become inadequate, for example
providing a high false alarm rate in a wide portion of
the flight envelope. Chow and Willsky (1984) first
defined model-based FDI to consist of two main
stages; residual generation and residual evaluation [8].
Patton et al. (1989) also outlined the criteria for
selecting a suitable FDI approach, two of which were
low false alarm rates and fewer missed faults [9]. In
this work, SFDIA software has been designed in the
Simulink environment. The tool allows evaluating
either the open loop or the closed loop performance of
the SFDIA scheme that employs different kinds of NN
approximators and learning algorithms [10]. The NN
structure chosen is based on the Extended-Minimum
Resource Allocating Network (EMRAN) Radial Basis
Function (RBF), due to its good generalization ability
and fast performance [11].The completion of the
process has two stages the first stage construction of
the scheme NN base (SFDIA),involved the process of
modeling and simulation of (Power supply, Engine
Condition, Flight Control Situation, Environmental
Situation, and the second stage the (EMRAN)
algorithms (Extended Minimal Resource Allocation
Network) which is a set of conditions that decide how
the (EMRAN) structure should be adapted to better
suit the training data, using (Mat lab, Simulink
program) and Extended-MRAN (EMRAN) algorithms.
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2. Neural network-based SFDIA

Analytical redundancy implies that some of the
system variables are functionally related namely a

variable y(k) can be expressed as function of a
suitable set of other variables Z(k) and input
commands U (k).

Fig. 1 shows the (SFDIA) scheme.
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Fig. 1. General SFDIA scheme [12]
s (k)=r[2(k),u(k)], (D

where u(k) — inputs commands. z(k) — function of a

suitable set of other variables, y,(K) - estimation
signal provided by estimator (ANN).
The residual signal r(k) is the difference

between the sensor output y(k) and its estimation

v, (k) provided by a proper estimator (in this work the
estimator is a Neural Networks NN) [13].

r(k)=y (k)= (k).

where: y(k) —sensor output, y (k) — estimation

)

signal provided by estimator (ANN), r(k) — residual

signal.

When the square of this (filtered) residual
exceeds predefined threshold, the state of the
corresponding sensor is declared suspect and a suitable
procedure is called to decide on the health status of
this sensor.

Fig. 2 shows a flowchart of the predefined
threshold.

If the state of the sensor is then declared faulty, a
procedure is enabled, and an accommodated variable

Va4 (k) are provided as output. In this work the
accommodation procedure simply substitutes the faulty
measure with the Estimation given by the ANN.

Fig. 3 Shows the accommodation with the
estimation given by the ANN.

Va(K)=r(k) 3)
Several options can be added to this basic scheme
to increase robustness in presence of noisy

measurements and/or intermittent sensor failures [14]
Thus, the accommodation procedure substitutes the
faulty measurement with the estimation given by the
NN [15]. As for any SFDIA approach, the following
capabilities are critical:

1) failure detect ability and false alarm rate (the
sooner the fault is detected and the least the number
of false alarm it is, the better is the SFDI system [16];

2) estimation error (The least is the estimation
error; the better is the quality of the accommodation)
[17].
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Fig. 2. Predefined Threshold

In the caseof multiple physical redundancy the accommodation

IF no physical redundancy is available the accommodation
procedures substitutes the faulty measure with the estimation
given byANN

; Usually consists on the simple repiacement of the faulty sensor by
o  ahealthy one
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Fig. 3. The accommodation with the estimation
given by the ANN

3. The simulation

The Neural Network based SFDIA modeling and
simulation toolbox was built under the Math lab and
simulink for Technical computing (by The Math works
Inc) [18]. In particular the freely available aircraft
Sensor  Failure, Detection, Identification and
Accommodation (SFDIA) toolbox for Mat lab provides
powerful tools for aircraft simulation [19-20]. A bank of
output estimators has been implemented as showed in
Fig. 4.

SFDIA (Sensor Failure Detection Identification
and Accommodation).

It is the core of the tool that performs the main
SFDIA procedures. It is constituted by two main sub-
blocks [21]:
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Fig. 4. Bank of estimators for output residual generation

1. Approximators

The block contains the Neural Network based
function estimators. Fig. 5 is a scheme for estimation of
(6) types of faults. It includes Ac. Generator sensor

channel (k), sensor channel b(K), altitude sensor
channel ¢(K), air speed sensor channel (K), RPM

sensor channel (k) , fuel quantity sensor channel f(k)
[22, 23].

2. SFDIA LOGIC

The block performs the main threshold based
sensor failure  detection  identification  and
accommodation operations (Fig. 5). Two filtered
residuals  (derived by filtering the absolute
approximation error with both a “fast” low pass filters
and a “slow” low pass filter) are contemporary
evaluated for each sensor.

When the fast filter output is bigger than a
threshold, the corresponding NN learning is
preventively stopped (LE=0), in order to prevent the
possibly wrong signal from being learnt. When the slow
filter output 1is bigger than a threshold, the
corresponding sensor is declared failed (AE=0), so the
accommodation logic is enabled, and the estimated
signal is fed back through the controller instead of the
faulty one [24].

LE Detection Abs Slow Filters
Res
AE ef |e [U| e ef e
AE Identification logic Abs Fast Filters

Fig. 5. SFDIA Logic

4. Results

In order to apply this technique (ANN based
SFDIA)and(NN) trained with the (EMRAN) algorithms
(Extended Minimal Resource Allocation Network)
which is a set of conditions that decide how the
(EMRAN) structure should be adapted to better suit the
training data to improve electrical sources performance
of unmanned airborne vehicles seven cases were taken
in this study as follows:

4.1 The altitude and airspeed sensor
Figure (6-a) and (6-b) show a typical time of ¥_
(altitude and airspeed sensor ) and its estimation, during
the occurrence of a simulated failure on it, at (=300
sec) using the (EMRAN) algorithm, [25, 26]. The

results show that EMRAN-algorithm is well suited for
fast on-line identification of nonlinear plants.

4.2 The (R.P.M) and fuel quantity sensor

Figure 7a and 7b shows a typical time of Y,_
(R.P.M) and fuel quantity sensor) and its estimation,

during the occurrence of a simulated failure on it, at
(17=300 sec).

4.3 The Ac generator and battery sensor

Figure 8a and 8b show a typical time of Y,_ (Ac

generator and battery sensor) and its estimation,
during the occurrence of a simulated failure onit, at

(17=300 sec).

4.4 The (pitch, roll and heading angle)
sensors
Figure 9a, 9b and 9c show a typical time of ¥;_
(pitch angle, roll angel and heading angle sensor) and
its estimation, during the occurrence of a simulated
failure on it, at (¢, =300 sec).

4.5 The (aileron, rudder and elevator)
deflection sensor

Figure 10-12 show typical time of (Aileron, Rudder
and Elevator) angle and its estimation, during the
occurrence of a simulated failure on it, at ;= 50 sec.
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Fig. 9. Heading angle sensor and its estimation, during the occurrence of a simulated failure on it (a);
roll (b) and pitch (c) angel sensor (accommodated nominal, accommodated estimated, failed) at (¢,= 300 sec)

These figures show that when fauilt takes place the
trend will no more follow the normal behavour
trend.hence, it can be detected early.inspection can then
locate the cause and solution can be put to prevent
eccedents.

Conclusions

In this paper unmanned air vehicle (UAV), Neural
Network based tool scheme (SFDIA) for the Sensor
Failure, Detection, Identification and Accommodation
problem tool were analyzed. The scheme was
implemented with (RBF-EMRAN Neural Network
algorithms which are a set of conditions that decide how
the (EMRAN) structure should be adapted to better suit

the training data. The use of Neural Network for sensor
estimation of a parameter of interest has been studied.
By analysis the results of applying the technique used in
this research, the application showed high-resolution
for the process of replacing the faulty sensor by using
the Neural Network estimated value itself for further
usage (as a feed back). Close match between
estimation and actual sensor output has been
established. In addition the capabilities of (SFDIA) are
a consequence of the extensive modularity of the
whole simulation tool. It allows an easy change of
unmanned air vehicle (UAV), dynamics and feedback
control law as well as Neural Network (NN) estimators
and (SFDIA) scheme.

55



Advanced Information Systems. 2017. Vol. 1, No. 2 ISSN 2522-9052

—_

10.
11.

12.

13.

14.
15.

16.

T
i —
) [=1}
2 i e
a0 a c 40
e — 4 S
g3 S 0 5 W0
‘@ a & 20
& 5 20 %
Bl = B 40 NN - 2 10 i :,rH"'
[ =
£ = S5 e T o) S Ofe= T
Z a0 g 5 i
= & -10 710 =
2 o 30 60 £ B £
= Time (sec) 2 0 30 60 90 § o 30 60 o0
< Time [sec) Time [sec)
a b c

Fig. 10. The aileron deflection sensor signal with time at #= 40 sec (a —up, b —neutral, ¢ — down)

; ; :
= 0.3 T O 5.0 3
s .
So.2 Ea s 202 ] oo
E 0.1 ﬂﬁ .t % 0.1 H S o Ll
S B e P N 20.
5, s R - g o .
3 £ o i ke
LT 0.2 £0.2 =L ‘
%03 Fo3 S0
T 0 30 60 o0 = 30 60 o0 BO3, 35 a5 =
= Time [sec) = Time [sec) = Time [sec)
Fig. 11. The Rudder deflection sensor signal with time at £,= 40 sec (a — left, b — neutral, ¢ — down)
i —
s g 5
S35 £35 S5
T 25 = & 2.5 525 ,gf
§15 = & - a AT L P,
4 ) | ats = 31'5 = =
[ a0 oy QL_“— =
£ St | 5 0
£45 3 Py 515 S5 Ui L
Pas bl [ WL M) 2-2.‘- = g7 J
‘E—:}.f- §-3.F- ‘34';
3 G 30 60 S0 [ 30 1] O 3 0 0 &0 of
= Time (sec) 2 Time [sec) o Time (sec)

Fig. 12. The Elevator deflection sensor signal with time at #= 40 sec (a-up, b — neutral, ¢ — down)

REFERENCES

Stevens, B.L. and Lewis, F.L. (1987), Aircraft Control and Simulation, John Wiley & Sons, New York.

Kerr, T.H. (1982), “False Alarm and Correct Detection Probabilities over a Time Interval for Restricted Classes of Failure
Detection Algorithms”, IEEE Transactions of information Theory, IT-28, No. 4, pp. 619-631.

Powell, M.J.D. (1987), “Radial Basis Function for Multivariable Interpolation: a Review”, Algorithms for approximation.
J.C. Mason and M.G. Cox, Eds. Oxford U.K. Oxford Univ. Press, pp. 143-167.

Vemuri, A., Polycarpou, M. and Diakourtis, S. (1998), “Neural Network Based Fault Detection and Accommodation in
Robotic Manipulators”, IEEE Transaction on Robotic sand Automation; Vol. 14, No. 2, pp. 342-348.

Napolitano, M.R.Y. and Seanor, B. (2000), “A fault tolerant flight control system for sensor and actuator failure using neural
networks”, Aircraft Design, Vol. 3, pp. 103-128.

Polycarp, M. (1998), “On-Line Approximates for Nonlinear System Identification: A Unified Approach", Control and
Dynamic Systems Series, Vol. 7, Neural Network Systems Techniques and Applications (Academic Press, January 1998).
Frank, P.M. (1987), "Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy. A survey and
some new results", Automatic, pp. 459-474.

Chow, E.Y. and Willsky, A.S. (1984), “Analytical redundancy and the design of robust detection systems”, IEEE Trans.
Automat.Contr., Vol. 29, pp. 603-614.

Patton, R.J. Frank, P.M. and Clark, R.N. (1989), “Fault diagnosis in dynamic systems, theory and application,” London,
Control Engineering Series, Prentice Hall.

Platt, J.C. (1991), “Resource Allocation Network for Function Interpolation”, Neural Computation, 2, pp. 213-225.
Sundararajan, Y.Li, N and Saratchandran, P. (2000), “Analysis of minimal radial basis function network algorithm for real
time identification of nonlinear dynamic systems,” IEEE Contr. Theory and Application, Vol. 4, pp. 476-484.

Fravolini, M.L Campa, G.M., Napolitano and Song, Y. (2001), “Minima resource allocating networks for aircraft SFDIA”
Advanced Intelligent Mechatronics, Vol. 2, pp. 1251-1256.

Frank, P.M. and Ding, X. (1997), “Survey of Robust Residual Generation and Evaluation Methods in Observer-Based Fault
Detection Systems”, Journal of Process Control, Vol. 7, No 6, pp. 403-424.

Isermann, R. (1984), "Process fault detection based on modeling and estimation methods, Automatics, pp. 387-404.

Zhang, Q. and Zhang, Y. (1996), "A method for fault detection and isolation using neural Networks," IEEE International
Conference on Neural Networks.

Cai, G., Lum, K.-Y., Chen, B.M. and Lee, T.H. (2010), “A Brief Overview on Miniature Fixed-Wing Unmanned Aerial
Vehicles,” Proc. 8th IEEFE International Conf. on Control and Automation, Xiamen, Chinapp, pp. 285-290.

56



ISSN 2522-9052 CyuacHi indopmaniiini cucremu. 2017. T. 1, Ne 2

17. Alessandri, A. and Parisini, T. (1998), "Neural state estimators for direct model-based fault Diagnosis", Proceedings of the
American Control Conference.

18. MATLAB Help Documentation (2011), Math works, available at: www.mathworks.com (last accessed May 11, 2017)..

19. Rauw, M.O. (1993), 4 Simulink Environment for Flight Dynamics and Control analysis - Application to the DHC-2
“Beaver” (MSc-thesis, Delft University of Technology, Faculty of Aerospace Engineering, Delft, the Netherlands, 1993).

20. Esposito, F., Accardo, D., Moccia, A., Ciniglio, U., Corraro and Garbarino, L. (2007), “Real-Time Simulation and Data
Fusion of Navigation Sensors for Autonomous Aerial Vehicles”, Advances and Innovations in Systems, Computing Sciences
and Software Engineering; Elleithy, K., Ed.; Springer: Dordrecht, The Netherlands, pp. 127-136.

21. Nasuti, F.E. and Napolitano, M.R. (2000), "A learning approach to the SFDIA problem using radial basis function networks"
Proceedings of the IEEFE International Symposium on Intelligent Control.

22. Alessandri, A., Baglietto, M. and Parisini, T. (1998), "Robust model-based fault diagnosis using neural nonlinear estimators,"
Proceedings of the 37th IEEE Conference on Decision and Control.

23. Alessandri, A. and Parisini, T. (1998), "Neural state estimators for direct model-based fault Diagnosis", Proceedings of the
American Control Conference.

24. Li, Yan, Sundararajan, N. and Saratchandran, P. (2000), “Dynamically Structured Radial basis Function Neural Networks for
robust aircraft flight control”, Proc. American Control Conference, Chicago, pp. 3501-3505.

25. Junge, T.F. and Unbehauen, H. (1996), “Off-Line Identification of Nonlinear Systems Using Structurally Adaptive Radial
Basis Function Networks”, (1982), Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, pp. 943-948.

26. Junge, T.F. and Unbeaten, H. (1997), “On-Line Identification of Nonlinear Time-Variant Systems Using Structurally
Adaptive Radial Basis Function Networks”, American Control Conference, pp. 1037-1041, Albuquerque, New Mexico.

Hapniitmna (received) 26.05.2017
IpuitasaTa no npyky (accepted for publication) 04.10.2017

30inpmeHHs e)eKTHBHOCTI MOJILOTY 0e3MiJIOTHHX JIiTAJILHAX aNapariB 3 BUKOPHCTAHHAM IITYYHAX HEHPOHHMX Mepex
Caani T. Kypai, Axmen Xamin Pes, An-Ammvati Axpam @ari Xycceitn

Mera. Binomo, mo mnomit Oesminornoro nitansHoro amapary (BITJIA) 3niiicHroeTbest 3a IONOMOTON JATUMKIB, SKi
nepenatots podoty BITJTA, i Ha ocHOBI wi€l iHpopmanii BITJIA koHTpomOeTECS 1 Ja€ IM 3aMOBIICHHS, HEOOXi/HI ISl BUKOHAHHS
3aBaanHs noneoTy BITJIA. HecrpaBHocTi B ympaBiiHHI BinOyBaroThes mif gac nonsoTy BIIIA, BiIHOBIIHO 1O KOHIIEMINiN
aBialii - KpUTUYHA CHTYallis, SIKa BIUIMBA€ Ha 3aBepiueHHs Micii. Ili HecrnpaBHOCTI BUKIIMKAaHI T'OJOBHHM YHMHOM 300€M B
JIATYMKAX, AKI MOXKHA PO3AUIMTU HA CHUTYyalii 3 IOJBOTOM — IPO IOJNIT JHTaJbHUX anapariB (HaNpsIMOK, BUCOTA, MOBITpsHA
IIBUJIKICTh, BEPTUKAIbHA MIBUJKICTD 1 KYT aTakd) i CUTYallisl 3 yNpaBIiHHAM IIOJBOTOM, 1€ CTOCYEThCS IIOBEPXOHb YIPABITiHHS
MOJILOTOM, TAKUX K KEPMO, €JEpPOH, KepMO BIIXWICHHS 1 JaTYMKU IepeMUKada i peryiasropa BHUCOTH. Y Wil cTarTi
IpeJICTaBICHNH e(EeKTHUBHUI METOA, 110 JO3BOJSIE JAATYMKaM IPAIfOBaTH 3 BUCOKOI edekTuBHicTIo. Mertoan. Y wii pobori
BUKOPHUCTOBYIOTbCSA [Ba pi3HMX mizxomu. [lepmmil minxin 3acHOBaHMH HA IHCTPYMEHTI Ha OCHOBI HEHpPOHHOI Mepexi s
MOJICIIFOBaHHS, CUMYJISALIT Ta aHali3y JIiTakiB, 30010 1aT4YMKiB; BUABICHHS, ifeHTU]ikauil i pimenHs npodnem. Hpyruii miaxin -
HEHpPOHHA Mepexa, 1110 HABYAETHCA 3a JJOIIOMOIOK0 aITOPUTMIB, IIPEJICTaBIsAE COOO00 Habip YMOB, SIKi BU3HAYAIOTh, SIK CTPYKTYypa
Mepexi NMoBHHHA OyTH ajanToBaHa, OO0 Kpallle BiAINOBiNAaTH JaHMM HaBuyaHHA. Pe3yabTatu. Pesynbratu MonenroBaHHs Ta
aHaJIi3y JaT4HKiB JIITAJILHUX alapaTiB 10Ka3ajH, 10 IHCTPYMEHTH Ha OCHOBI HEHPOHHOI MEpeKi 1 alropuTMH 3JaTHI I0Ka3yBaTH
pe3yabTaTH 3 BUCOKOIO PO3JILUIFHOIO 3/IaTHICTIO IIOJ0 ITOBEIiHKY JaTUHUKIB 1, oTKe, moBeniHnku BITIA. BucHoBKkH. MoXITHBOCTI
IHCTpYMEHTa € HACJIIIKOM BEJIMKOI MOIYJIBHOCTI BCi€l CHCTEMH MojeltoBaHHs. Lle 103BosIste erko MiHATH Oe3MUIOTHI JTiTalubHi
arapaTy, 3aKOHH JIMHAMIKH 1 KOHTPOJIIO 3BOPOTHBOTO 3B'SI3KY, @ TAKOXK OLIHKH HEHPOHHOI Mepexi.

Karo4dosi cioBa: 0e3ninOTHUI JIITAIBHUI anapar; BUSIBICHHS HECIIPABHOCTEH JaTUHUKIB; 1iarHOCTUKA HECIIPABHOCTEH;
MOJICIIFOBaHHS Ta CUMYJIIOBAHHS JIITAJIbHUX arapaTis.

Yeeauuenue 3gphexTHBHOCTH 110JIeTa 0eCIMIOTHBIX JIETATEJIbHBIX ANNAPATOB
¢ MCII0JIb30BAHHEM HCKYCCTBEHHBIX HEHPOHHBIX ceTeil

Caagu T. Kypau, Axmen Xamup Pes, An-Ammatu Axpam Patu XycceltH

Leas. M3BecTHO, uTO MONIeT OecriotTHOro JieratenbHoro amnmapara (BITJIA) ocymecTBisieTcss ¢ HOMOIIBIO JTAaTYHKOB,
koropble nepenator pabory BITIA, u Ha ocHoBe 3Toit nHpopMauuu BIIJIA KoHTponMpyeTcs U AaeT UM 3aKa3bl, HEOOXOAUMBIE
JU1st BeINoNIHEeHUs 3a1auu nosiera BITJIA. HeucnipaBHocTH B ynpaBieHUH Npoucxonar Bo BpeMs nosera bIIJIA, B coorBeTcTBUU C
KOHIICTIIIMSIMK aBHAILIMA — KPUTHYECKas CHTyalus, KOTOpas BIMSET Ha 3aBEpILCHHE MHCCHU. JTH HEHCIPABHOCTU BBI3BAHBI
TJIaBHBIM 00pa3oM cOOeM B JIaTYHMKaX, KOTOPhIE MOJKHO pa3/IeNIuTh Ha CHTYalllH C MOJIETOM — O IIOJIETe JIETaTeIIbHBIX alllapaToB
(HampaBJIeHUe, BBICOTA, BO3LYIIHASI CKOPOCTh, BEPTHKAIbHAS CKOPOCTh U YroJl aTakd) U CUTYaLHs C YIPaBJICHUEM HOJIETOM, 3TO
KacaeTcsl IOBEPXHOCTEH YNpaBIICHUS IOJIETOM, TaKMX KaK PyJdb, 3JEPOH, PYJIb OTKIOHEHHS W JAaTUMKU MEepeKIrodaTelst U
perynsTopa BBICOTEL. B aT0l craThe mpexacraBiieH SQQEKTUBHBIA METOH, MO3BOJSIIOIIMK JaT4nKkaM padoTaTh C BBICOKOI
s dexruBHOCTEI0. MeToabl. B 310l paboTe HCIoNb3yloTCs ABa pa3HBIX Hoxxo/a. [1epBhIil TOIX01 OCHOBAaH Ha HHCTPYMEHTE Ha
OCHOBE HEHPOHHOM CeTH Uil MOJIEIHMPOBAHMS, CHUMYJIHPOBAaHWS M aHajIM3a CaMOJIETOB, COOSl JATYMKOB; OOHAPYXEHHUS,
UASHTUUKAMKA U peleHus npobiem. Bropoll moxxonm — HeipoHHas ceTh, o0ydaeMasi C IIOMOIIBIO JITOPUTMOB, KOTOpast
IpeJICTaBiIseT co00i HaOOp YCIIOBUIA, KOTOPBIE ONPEEI0T, KaK CTPYKTYpa CETH JOJDKHA OBbITh aJanTHPOBaHA, YTOOBI JIydIle
COOTBETCTBOBATH JaHHBIM 00ydeHus. Pe3yabTaThl. Pe3ynbraTel MOIETMPOBaHUS M aHAIN3a JATYUKOB JICTATEIBHBIX alllapaToB
MOKa3ajy, YTO WHCTPYMEHTHl Ha OCHOBE HEHPOHHOW CETH M aJTOPUTMBI CIIOCOOHBI ITOKA3bIBATH PE3YJIBTAThl BBICOKOTO
paspeleHust B OTHOLICHHUH MTOBEICHUS JaTYMKOB M, clenoBaTelbHo, noBenenus BIIJIA. BeiBogbl. Bo3aMoxHOCTH MHCTpyMEHTa
SIBJISIIOTCSL CJIECTBHEM OOIIMPHON MOIYJIFHOCTH BCEH CHCTEMBI MOJCIMPOBAHUS. DTO MO3BOJSET JIETKO MEHSTH OECIUIOTHEIE
JIeTaTeNbHbIE almapaTthl, 3aKOHbI TUHAMUKH U KOHTPOJISI 00OPaTHOH CBS3M, a TAK)KE OLIEHKH HEHPOHHOW CETH.

Karoudesblie cioBa: OeCMIOTHBII JeTaTeNbHBIN anmapar; oOHapy)KeHHE HEHCIIPAaBHOCTEH IaTYMKOB; JUarHOCTHKA
HEHCNPABHOCTEH; MOZIEIMPOBAHNE U CUMYJIUPOBAHHE JIETATENbHBIX aIllIapaToB.
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