Advanced Information Systems. 2017. Vol. 1, No. 1

ISSN 2522-9052

Methods of information systems protection

UDC 004.492.34

S. Gavrilenko, D. Saenko

doi: 10.20998/2522-9052.2017.1.08

National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

DEVELOPMENT OF THE METHOD AND PROGRAM MODEL
OF THE STATIC ANALYZER OF HARMFUL FILES

The subject of research in this article is the methods of analyzing malicious software. The goal is to improve
the secure functioning of computer systems (CS) and protect them from the effects of computer viruses.
Research target: the research of modern means of software antivirus protection; analysis of the methods of
creating a file signature; the development of a software model for static file detection, based on the analysis of
the PE structure; the generation of tables of features that are inherent to families of viruses such as Worms,
Backdor, Trojan; the obtainment binary signatures of malicious and secure software. The methods used are:
analysis of the code in a Hex file, file hashing algorithms. The following results are obtained. The PE-structure
of the file has been analyzed; sections have been selected for further analysis. A software model of static file
detection has been developed and the analysis of secure and malicious files has been performed. Features in the
form of strings and API functions have been selected; a bitmask has been formed for further file analysis. 3500
files of malicious and safe software has been scanned, their analysis has been performed. Signatures of each
malicious file have been encoded and stored in the signature database. Using the developed software model, a
study has been made of the possibility of detecting modifications to malicious software. Conclusions. A
method and software model of static detection of malicious files has been developed, which allow automatic
obtainment of a set of file features and draw a conclusion about the severity of the file.

Keywords: malicious software, signature, Python, portable execute, malicious application, API functions,

harmful files.

Introduction

The times when the information security was
reduced to the policies and protection of all devices in
the corporate network are a thing of the past. Today this
is clearly not enough. Cyber threats are developing
rapidly, and the understanding of which direction this
development is taking place plays a key role in ensuring
the effective protection of enterprises [1]. If the viruses
were not detected at an early stage, the recovery cost
after an attack increases more than twofold. For
example, the total recovery cost after a cyber attack
lasting a week or more is over 1 million dollars. At the
same time, the immediate reaction to the malfunction
costs the company an average of 400 thousand dollars.

To date, there is a great number of anti-virus
programs, but they are not capable of completely
protecting the information stored on the computer, so a
timely detection of malicious software is a crucial task.

Analysis of the problem
and formulation of the research target

The analysis of the literature [2-8] has proven that
many specialized anti-virus programs are used as
protection from cyber attacks, whose work is most often
based on the technologies of signature and heuristic
analysis. One of the components of suspicious software
analysis is static detection — according to the file analysis
conducted in binary format and dynamic detection —
according to their behavior in the system [9, 10].

Threat data is collected from a variety of sources,
including cloud infrastructure, web crawlers, botnet

monitoring services, spam traps. New cyber threats are
determined by checking URLs, domains, IP addresses,
file checksums, timestamps, file names, DNS data, and
other features that are inherent to the programs. The
received information is thoroughly checked,
systematized, cleaned and analyzed both by technical
means and by company analysts that are developing the
antivirus software.

At the same time, to date, there are no automated
systems of decision-making on the account of file
severity and the building of a signature for newly
detected malicious software.

The solution for the research target

For the analysis of files, two types of searches are
used for detecting anomalies: static and dynamic [12-
16]. Static code analysis is based on the analysis of the
frequency of using the processor's commands and on the
basis of this information a conclusion is made
concerning the file’s virus infection.

The main demerit of this method is that there is a
number of complex polymorphic viruses that use almost
all the processor commands and from copy to copy the
set of used commands varies greatly, therefore,
according to the constructed frequency table it is not
possible to detect the virus.

The method of dynamic code analysis consists in
analyzing the executable code in a special
"environment", called the emulation buffer or
"sandbox". The result of this analysis is a summary of
objects that were active during the execution of the file.
A modern dynamic method can check not only the

44

© S. Gavrilenko, D. Saenko

ISSN 2522-9052

CyuacHi iHpopmarniiiai cuctemu. 2017. T. 1, Ne 1

processor’s commands, but also the activation of the
operating system. The task of writing a full-fledged
dynamic analyzer is quite laborious, not to mention the
fact it requires constant monitoring of the actions of
each command. This is necessary in order to not
accidentally activate the destructive components of the
virus algorithm.

In this paper, a program model for the static
detection of files in binary format has been developed
according to the analysis of the PE-structure of
executable files in order to obtain features that are
characteristic for malicious files [10,12,14]. The
analyzed files are a family of viruses such as Worms,
Backdor, Trojan. The developed software allows the
analysis of the import and export sections of the file’s
structure and receives the names of functions and
dynamic libraries, as well as information about function
arguments: the names of the services used, the names of
the processes to be deleted or created, various network
peculiarities (IP addresses, ports, resource addresses,
email addresses). The analysis of the PE-structure of the
file made it possible to identify a number of parameters
for further investigation. As a further study, it was
decided to use the following parameters:

- Shannon’s entropy of the data

(H =ZZ0(Ni/N)'1°g(Ni/N));

- a compiler or /packager;

- number of sections;

- availability of a certificate;

- the presence of a record during boot up;

- list of used API functions that cause suspicions in
the executable file.

These parameters characterize:

section;

- file compression;

- a packed file may raise more suspicion;

- a large number of sections can cause suspicion;

- the availibility of a certificate reduces the
likelihood of file damage;

- the presence of a record during bootup causes
increased attention;

As an example, 290 files of Worm type, 1050 files
of Trojan type, 1153 files of Backdoor type, 1000 safe
files have been analyzed in this paper. The application is
written in Python with the use of pefile libraries and
sqlite3 database.

The first stage of the study is the removal of
information from the PE-structure of malicious
software: and the search for API functions from the
import and strings table (Hex-sequences of a given
length, Fig. 1).

f PE File
|
) G
Code
Sections * Imports PYHKLIMKH
Data
(S =

Fig. 1. PE structure of executed file

In Fig. 2 an example is shown of a PE file
structure with highlighted areas of analysis.

Offset(h) 00 Ol 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF
00000000 [4D SA]90 0O 03 00 00 00 04 00 00 00 FF FF 00 00

00000010 [BE 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00| pOS header
00000020 [00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00000030 [00 00 00 00 00 00 00 00 00 00 00 00[20 00 00 00

00000040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 &8

00000050 |69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F| poS swub
00000060 |74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20

00000070 [6D 6F 64 65 2E OD OD OA 24 00 00 00 00 00 00 00

00000080 [50 45 00 00J4C 01 03 00 8D FA €1 4D 00 00 00 00| PE signalure, PE file header
00000090 [00 00 00 00 0 000z 01Jos 0:J08 00 00 0A 00 00| op qandard fields
000000A0 00 02 Q0 00 00 00 00 00[9!‘: 28 00 00100 20 00 00

00000080 |00 40 00 00fo0 0O 40 00 00 20 00 00 00 02 00 00

000000C0 [04 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00| PE NT fields
000000D0 [00 20 00 00 00 02 00 00 01 82 00 00 [03 00]40 es

000000E0 [00 00 10 00 00 00

000000FO0 00 00 00 00 10 00

00000100 |3)0 00 4

00000110 Data directories
00000120

00000130

00000140

00000150 20

00000160)& 20 00 00 48 00 00 00

00000170 |00 0 00J2E 74 €5 7¢ 74 00 00 0O

00000180 00[00 20 00 00)00 OA 00 00 [00 02 00 00| -lex!sectionheader
00000190 00 00 00 00 00 00 00 00 00 20 00 00 60

000001A0 72 63 00 00 00 'S 00 00 [00 4 1r51¢ section header
00000180

000001C0O 00 40 00 00 40

000001D0 00[00_60 00 00/00 02 00 00[00 12 00 00| ‘felocsection header
000001E0 00 00 00 00 00 00 00 00 00 40 00 00 42

000001F0 00 00 00 00 00 00 00 00 00 00 00 00 00

00000200 00 D0 00 00 00 48 00 00 00 02 00 05 00| text section
00000210 09

00000220 50 20

00000230 0 00 00 00 00 00 00 00 00 00 00 00 00

Fig. 2. Example of a PE file structure

45

Advanced Information Systems. 2017. Vol. 1, No. 1

ISSN 2522-9052

The result of the analysis of the PE malicious
files structure being investigated is presented in two
tables:

- a table with API-functions and libraries, in which
they are included. A total of 24,945 entries were
received (Fig. 3).

- table with strings (Fig. 4). A total of 175651
strings were found, the length of which varied from 6 to

70 characters.

In a similar manner, the testing of secure software
has been performed. A fragment of the test results is

shown in Fig. 5.

TABLE |import | Mowek | | Mokasats e AofaenTs | | AySnuposaTts | | Wameruts | | Yaanute
rowid id id_file libf funcf 2=}
1 1 1 msvirerned.dll _cicos ~
2 1 1 msybymdd. dil _adj_fptan

3 1 1 msvvmod. dil _ vbafreavar

4 1 1 msvvmod. dil __vhaarymove

3 1 1 msvvmbd. dil _ vbastrearmove

[} 1 1 msvvmbd. dil _ vbalenbstr

¥ 1 1 msvvmb. dil _ vbaend

Fig. 3. Table of found libraries and API-functions

TABLE |stringl | Nonck | |ﬂoua3mb_ncé| | AoSasnTe | |£h,r6ﬂupona1b| | VemenHte | | Yaanme |
rowid id id_file strline srte =3
1 |‘I |‘I |!this program cannot be run i...|44 ~
2 h h |"data |6
2 I I | msvbvmeD.di |12
4 |'| |'| |systemm0nitor |'|3
3 |‘I |‘I |sysr'r'|or1 |6
6 |'| |'| |task manager |'|2
Fig. 4. Table of found strings
1 DYHHLMK Konuuecteo % funcf count(funcf)
2 |GetProcessHeap 277 40 getmodulefilenamea 219
3 |_onexit 281 40 writefile 219
4 |WriteFile 285 41 getprocaddress 206
5 [WideCharMultiByte 291 42 regclosckey 194
6 |DeleteCriticalSection 296 42
7 |SetlastError 298 a3 closehandle 1
8 [GetModuleA 306 a4 getsthandle 190
9 [HeapAlloc 314 a5 getlasterror 1
10 |MultiByteTowideChar 315 a5 exitprocess 173
virtualalloc 17
Fig. 5. Fragment of the 'results setfilepointer 168
of safe software testing localalloc 167
. . createfilea 157
The analysis of the received data of the harmful frelibrary 155
and secure software, has allowed the allocation of the
most frequently meeting functions and strings that are strline count{strline)
inherent to each family of the considered viruses and the tobject 799
generation of the feature table. It was decided to use 50 integer |700
features for further analysis. Fig. 6 depicts a table of sender 687
features that are characteristic for viruses such as kernel32.dll 685
Worms. joht'@ 648
These features were later used as bit masks for file graphics 550
analysis. As a result of searching for selected features in jeht'@ 486
files, binary vectors of malicious files and safe software w.cpp 432
were obtained (Fig. 7). boolean 428
To avoid accidental errors in the transmission classes 395
of data and to detect intentional changes to the file by user32.dl 376
attackers, the binary vectors of the malicious software controls 324
are encoded using one of the MDS5, SHA-1, or CRC closehandle 309
algorithms. getmodulehandlea 287
These algorithms are widely used to obtain file advapi32.di 283

signatures. Fig. 8 demonstrates examples of signatures
obtained using various methods.

Fig. 6. Tables of the most common functions and strings

encountered in malicious files such as Worms

46

ISSN 2522-9052

CyuacHi iHpopmarniiiai cuctemu. 2017. T. 1, Ne 1

255

257
258
252

257
258
259
260
261
262
263
264
265

Sa o aaaa
ssag 000
Leooo

S o DO L 002,00 0=
- TP - I B

(=]
-0 L, 009 0000

(=]
L= - -
e - -

L T e - T)
L=

- - - - - -
R S
L - T RN,
L I - -]
L - R - - - I
L= - I I - - T Y

a2
L=
- Sy
[
-

274272 1 ¢ 111 0 0 01 00101
275224 1 001 01 0 01 001101
276275 1 ¢ 1 0 ¢ 111001000
277|276 0111 0011100000
278277 001 1 01101000101
27a278 001 1 01100000111
280272 0 1 1 01 0 01100000
2g1(280 ¢ 1 1 0 0 0 0 0 000101
282|221 0 1 1 0 0 0 0 0 00 01 01
283(282 ¢ 1 1 0 ¢ 0 0 0 000101
2g4(283 01 0 00001100110
2gs|2g4 0 001 1 01 01010000

N N

27011 0000010000101 10001001000¢000000

T T R
o
WO e

- o

A LA e e == =D

256|255 ¢ 01 01 0011001 1110101110000 10000001

0001111001 00000000¢0
C 00110000000 00000¢0
100101001000000000¢0
1011100000000 0001
10001101001 0000000
1011101 ¢01000000¢0
010111010000000000¢0
11111001000 00000C0
cot1o011to010010000100
1111100100100 0001
C 0011000000000 010¢0
cooQe1T101011000000D000
111001 ¢01001000001

001101 00¢100000100¢0
0001101101 00000000¢0
010111 100¢10000000¢0
co1o011110010000000
01010101001 0000000¢0
10111 0¢1¢010000020¢0
010111 0¢1¢01000000¢0
10011 0¢0¢11010010¢10¢0
10011001101 0010100¢0
11111 ¢1100100000¢0
10101 0110011000000
101011101001 00000 0

Fig. 7. An example of a malicious files and secure software scan

The received signatures allowed the formation of a
signature database for the examined malicious software.

Further analysis of the software is performed by
using a developed code analyzer consisting of an
analysis block of the input file’s PE structure, a
decision-making system, a virus signature base, an
output unit.

The decision-making system allows you to set the
received signature coefficient of coincidence of the
analyzed software with signatures that are stored in the
database.

™

E1 FreemakeVideoConverter_1.1.10.exe Properties =
| General | Compatbiity | Digital Signatures | File Hashes
Name Hash Value
CRC32 E352B557
MD4 C59AF2C543E006A1F8779129782BC487

MD5 C1E887E71927BDD6EC5F20CB629032B98

SHA-1 8FC83EOEQ62E77DB4ESBCADSC1CA30315A0EAC. .
Tiger 632CC3F3461EAC3627776BB1BCAF4375D6C8BB2. ..
Whirpool 132E03EABEOCO3FSC7A31ADAAABB73625DE3CO...

Fig. 8. Examples of file signatures

The results of testing the developed parser showed
the possibility of using it to detect modified malware at
92% coincidence with the signatures that are stored in
the database. With a decrease in the coefficient of

coincidence, false positives appear which require
additional investigation of the analyzed file, for
example, by introducing a PRL block based on a nerve
network.

Conclusions

In this paper, we propose a software model of
static file detection, based on the analysis of the PE file
structure. 3500 malicious files (such as Worms,
Backdor, Trojan) and safe software have been scanned;
sections of file structure import and export have been
analyzed. Features in the form of strings and API
functions inherent in these families of viruses have been
selected; virus signatures have been generated and
stored in the signature database. Using the developed
software model, a static parser of malicious files has
been tested to detect modifications of malicious
software.

The test results revealed the possibility of using
the developed automatic static parser of malicious files
in the general system of anti-virus data protection. At
the same time, the coefficient of coincidence of the
received signatures of files with the masks template is
high enough, and its reduction leads to false positives.
This disadvantage can be eliminated by introducing into
the decision-making system an additional analysis
block, for example, based on a nerve network.

REFERENCES

1. Polugodovoy otchet po IB ot Cisco [Semi-annual report on information security from Cisco], available at: http://www.
securitylab.ru/blog/personal/ Informacionnaya bezopasnost_v_detalyah/316275.php (last accessed February 28, 2017).

Shelukhin, O.L., Sakalema, D.Zh. and Filinov, A.S. (2013), Obnaruzhenie vtorzheniy v kompyuternyie seti [Intrusion

Semenov. S.G., Davydov, V.V., and Gavrilenko, S.Yu (2014), Zaschita dannyih v kompyuterizirovannyih upravlyayuschih

sistemah (monografiya) [Data Protection in Computer-Aided Control Systems (monograph)] , “LAP LAMBERT

2.

Detection into Computer Networks], Moskva : Hot line-Telecom, 220 p.
3.

ACADEMIC PUBLISHING” Germany, 236 p.
4.

Igray, kak “Laboratoriya Kasperskogo” [Play as "Kaspersky Lab"], available at: http:/www.kaspersky.ru/about/

news/product/2017/kompaniya-otkryvayet-dostup-k-svoyey-baze-znaniy-o-kiberugrozakh-v-ramkakh-novogo-biznes-servisa

(last accessed February 28, 2017).

47

Advanced Information Systems. 2017. Vol. 1, No. 1 ISSN 2522-9052

5. Lukatsky, A.V. (2001), Obnaruzhenie atak [Attack Detection], St. Petersburg : VHV-Petersburg, 624 p.

Kaspersky, K. (20006), Zapiski issledovatelya kompyuternyih virusov [Notes of a researcher of computer viruses], St.
Petersburg: Peter, 316 p.

7. Goshko, S.V. (2009) Tehnologii borbyi s kompyuternyimi virusami [Technologies to combat computer viruses], Moscow:
Solon-Press, 352 p.

8. Semenov, S., Gavrilenko, S. and Chelak V. (2016), “Developing parametrical criterion for registering abnormal behavior in
computer and telecommunication systems on the basis of economic test”, Actual problems of economics, Kiev, Vol 4 (178),
pp- 451-459.

9. Tolstikhin L.O. (2009), Razrabotka metodov klassifikatsii zlovrednyih ispolnyaemyih faylov [Development of classification
methods for malicious executable files], available at: http://www.machinelearning.ru/wiki/images/ 5/58/Tolst09echrep.pdf
(last accessed February 28, 2017).

10. Ero Carrera (2007), Win32 Static Analysis in Python, available at: http://2006.recon.cx/en/f/lightning-ecarrera-win32-static-
analysis-in-python.pdf (last accessed February 28, 2017).

11. Sikorski, M. (2012) A. Honig Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software: San
Francisco, 802 p.

12. Antivlrusnl tehnologlyi: v poshukah panatseyi [Antivirus technologies: in search of a panacea], available at:
http://zillya.ua/antivirusni-tekhnologi%D1%97-v-poshukakh-panatse%D1%97 (last accessed February 28, 2017)

13. John Snow (2016), Sozdaem PE-virus Nel [Create PE-virus No.1], available at: https:/xakep.ru/2007/04/23/37880/ (last
accessed February 28, 2017).

14. Obnaruzhenie, osnovannoe na signaturah [Signature-based detection], available at: http://mind-control.wikia.com/wiki (last
accessed February 28, 2017).

15. PE Detective, available at: http://ntcore.com/pedetective.php (last accessed February 28, 2017).

16. Antivirusnyie dvizhki [Antivirus engines], available at: https://fcenter.ru/online/ softarticles/utilities/12214 (last accessed
February 28, 2017).

Hapmiiinua (received) 31.03.2017
IpuitasaTa no npyky (accepted for publication) 13.06.2017

Po3podka merony i nporpaMHoi MozieJli CTATHYHOI0 AHAJI3ATOPA WIKIAIMBUX (aiiiiB
C. 0. I'aBpunenko, 1. M. Caenko

IIpeamerom pocni/pKeHHs B JaHIH CTaTTi € METOMM aHalli3y LIKIJUIMBOTO IMporpamHoro 3abesnedyeHHs. Mera crarti
HoJisirae B MiZBUILIECHHI Oe3neku ¢yHkionyBaHHs koMmm'toTepHux cucreM (KC) i 3axucry iX Bii BIUIMBY KOMI'FOTEPHUX BipyCiB.
3aBaaHHs: JIOCHIPKEHHS Cy4acHUX 3aC00iB aHTUBIPYCHOIO 3aXHCTY IIPOrpaMHOro 3a0e3MeueHHs; aHalli3 MeToliB GpopMyBaHHS
curHatypu (¢aiiis; po3poOka IporpaMHoOi MOZeJi CTATUYHOrO JeTeKTyBaHHs (ailiB, 1o Oa3yerbesa Ha aHanisi PE-cTpykrypy;
(dopMyBaHHs TaOIMIB O3HAK, NPUTAMAaHHMX POAMH BipyciB Turmy Worms, Backdor, Trojan; oTpuMaHHSA JOBIYHHMX CHUI'HATYp
IIKIZIMBOro 1 0Oe3ne4Horo mporpamHoro 3abesnedyeHHs. BukopucToByBaHuMHM MeTOAaMH €: aHami3 koxy B Hex-daiini,
JITOPUTMH XellyBaHHs (ainiB. OrpuMaHi HacTynHi pe3yiabTaTu. IIpoananizoBano PE-crpykrypy ¢aiiny, oOpani cexuii mis
MojiaNIbIIoro anamizy. Po3pobieHa mporpaMHa MoOJeNb CTaTHYHOTO JETEKTYBaHHS (aiiliB 1 BUKOHAHO aHali3 Oe3neyHuXx i
wkignuBux Qaiinis. OOpani o3Haku y Burysini paakiB i API ¢ynkuiid, chopmoBana 6iToBa Macka Juls HOJAJBLIOrO aHATI3y
¢baiiniB. Bukonano ckanyBaHHs 3500 daiimiB ImKiutMBoro i Ge3neYHOro NporpaMHOro 3abe3nedeHHs, IPOBEACHO X aHai3.
CurHatypu KOKHOIO ILIKiJUIMBOro (aiiily 3akofoBaHi i 30epexeni B 0a3i cUTHaTyp, 3a JOMOMOTOX PO3poOJICHOI NPOrpaMHOL
Mozielli BUKOHAHO JIOCHI/PKEHHS MOXKIMBOCTI BUSABJICHHS MOAM(IKalil LIKIIIMBOrO NMporpaMHoro 3adesneuyeHHs. BucHoBOK.
Po3pobieHo MeTox i mporpaMHy MOJEb CTaTUYHOrO JIETEKTYBaHHS IIKIMBUX (aililiB, 110 JO3BOJsIE OTPUMATH HAOIp O3HAK
(bailry B aBTOMaTHYHOMY PEXUMi 1 3pOOMTH BUCHOBOK ITPO IIKIJUIMBICTH (ailiy.

Kurouosi cioBa: mkianuse nporpaMHe 3a0e3neueHHs, curHatypa, Python, nopraTuBHuil 3amyck, WIKiJUIMBUH TOIATOK,
API-dynkuii, mkiuisi daiinn.

Pa3paboTka MeToa 1 MPOrpaMMHONM MOJIEJIH CTATHYECKOr0 AHAJIN3aTOPAa BPEIOHOCHBIX (aiinoB
C. 1O. I'aBpunesnxko, /1. H. Caeuko

IIpeamerom uccnenoBaHus B JaHHOH CTaTbe SIBIISIOTCS METOABI aHAIM3a BPEIIOHOCHOI'O HMPOrpaMMHOI0 00ECICUEHHS.
Heap — nobimeHuu Oe30macHOCTH (QYHKIMOHMpOBaHMS KoMmnbloTepHbIx cucreM (KC) u 3ammra MX OT BO3JIEHCTBUSA
KOMIIBIOTEPHBIX BUPYCOB. 3aJa4M: UCCIEJOBaHUE COBPEMEHHBIX CPEACTB aHTHBUPYCHON 3aLIUTHI IIPOrPAMMHOr0 00€CIeYeHHUS;
aHanu3 MeToloB (OPMMPOBAHHUA CUTHATYphl (aillloB; pa3paboTka MPOrpaMMHON MOJENHM CTaTHYECKOro JIeTEKTUPOBAHUS
¢aiinos, 6asupyromasics Ha ananuse PE-ctpykTypsl; ¢popmupoBaHue TabiuIl MPU3HAKOB, MPHUCYIIMX CEMEHCTBaM BHPYCOB THIIA
Worms, Backdor, Trojan; mnomydeHue ABOMYHBIX CHUTHATYP BPEINOHOCHOrO M 0€30MacHOr0 IMPOrpaMMHOrO OOECIEUCHHUS.
Hcnonb3yeMbIMU MeTOAAMM SIBIIAIOTCS: aHanu3 kona B Hex-(aiine, anropurmsl xemuposanus ¢aitinos. [TonydeHsl cienyromme
pesyabTatbl. [IpoananmsupoBaHa PE-crpykrypa ¢aiina, BbIOpaHBl CeKUMM I IOCIENYMOIIEro aHanu3a. Pa3paGorana
IpOrpaMMHasi MOJIEIb CTaTHYECKOro JeTeKTHpoBaHUsA (ailiioB M BhINOIHEH aHanu3 Oe30macHBIX M BPEIOHOCHBIX (aiinos.
Bei6panbl npusHaku B Bune cTpok M APl dyHkumii, chopmupoBana OuroBas Macka s JaibHeHIIero aHaiausa Qaitios.
Beinonneno ckanuposanue 3500 ¢aiinoB BpellOHOCHOrO M 0€30I1aCHOrO MPOrpaMMHOrO O0ECIeueHHs, MPOBEIECH UX aHAIIM3.
CurHatypbl Kaxaoro BpeloHOCHOro (aiina 3akomupoBaHbl M coxpaHeHsl B 0ase curhatyp, C HOMOIIBIO pa3paOOTaHHON
MPOrpaMMHON MOJIENIH BBINOJIHEHO HCCIIE0BaHUE BO3MOXKHOCTH OOHApyXeHHs MOAM(UKAIMI BPEIOHOCHOIO HPOrpaMMHOrO
obecnieueHus. BoiBoabl. Pa3paboran Meron M HporpaMMHasi MOZIENIb CTATHYECKOrO JETEKTUPOBAHMS BPEIOHOCHBIX (aiinos,
MO3BOJISIOIAS TTIOTYYUTh HAOOp NPU3HAKOB (haiiyia B aBTOMATHYECKOM PEXXUME U CHIEIaTh BBIBOJ O BPEJOHOCHOCTH (haiina.

KiioueBblie cJ10Ba: BPEJOHOCHOE NPOrpaMMHOE oOeclieueHue, CMrHarypa, Python, mopraTupnuil 3amyck, BpeJOHOCHOE
npunoxenue, API-¢pyHkuun, BpesoHoCHbIe (aiiibl.

48

