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ANALYSIS OF MULTI-THREADED MARKOV SYSTEMS

Abstract. Known technologies for analyzing Markov systems use a well-operating mathematical apparatus based on the
computational implementation of the fundamental Markov property. Herewith the resulting systems of linear algebraic
equations are easily solved numerically. Moreover, when solving lots of practical problems, this numerical solution is
insufficient. For instance, both in problems of structural and parametric synthesis of systems, as well as in control
problems. These problems require to obtain analytical relations describing the dependences of probability values of states
of the analyzed system with the numerical values of its parameters. The complexity of the analytical solution of the related
systems of linear algebraic equations increases rapidly along with the increase in the system dimensionality. This very
phenomenon manifests itself especially demonstratively when analyzing multi-threaded queuing systems. Accordingly, the
objective of this paper is to develop an effective computational method for obtaining analytical relations that allow to
analyze high-dimensional Markov systems. To analyze such systems this paper provides for a decomposition method based
on the idea of phase enlargement of system states. The proposed and substantiated method allows to obtain analytical
relations for calculating the distribution of Markov system states. The method can be effectively applied to solve problems
of analysis and management in high-dimensional Markov systems. An example has been considered.

Keywords: multi-threaded queuing systems; high dimensionality; decomposition method of states enlargement.

Introduction

The conventional technology to analyze Markov
systems provides for calculating the limit vector of
probabilities of system states [1-5] using a formula

r=aW\, (1)
w=(m1, 72, ...,mn)— IS the vector of probabilities of states,
W=(P;) - is a matrix of probabilities of transition to the
variety of possible states, dj,w=n-n..

Computational complexity of solving systems of
linear algebraic equations (1) in conjunction with the
normalization condition

2 in=1 7 (2

grows rapidly along with an increase in problem
dimensionality [6, 7].Herewith one should note that
when solving lots of practical problems, their numerical
solution will be insufficient. Problems of economics,
reliability theory, structural and parametric synthesis of
systems, management theory should provide for
analytical relations that determine the dependence of the
probability distribution of system states on the
numerical values of their parameters [8-10]. The issue
of obtaining such relations is particularly significant for
the problems of analyzing multi-threaded systems. The
conventional approach to its solution is to use the
technology of enlarging states of the related Markov
chain [12, 13].

Analyzing known results

The decomposition problem arising from states
enlargement is implemented as follows. The entire set
of possible system states is divided into subsets. At each
iteration of solving problems, one of the subsets is
allocated, but the states of other subsets are enlarged.
The resulting system of states is processed. Let's write
the related formal relations.

The initial set of states E={1,2,...,n} is divided into
m subsets

E={E.E;...En}, Up By =E. By NE, =2. (3)

The states of each subset are renumbered:
Ey = {itg k2o | B2 = {i1si22:12n, |

En = {imllimZv--'imnm}-

Let's enter the related (3) initial distribution of states

,r<o>:(,,_(0) ,,_<o>] [ﬂ_(m ) j

1 1

At the first iteration of the problem solving
procedure let's allocate the firstEiset, and enlarge states
of the remaining subsets by assigning them the related
initial values of stay probabilities. Thus the resulting set
of states probabilities is as follows:

2% :[ﬂi(o),m(o)““'ﬂi(o) j;ﬂ-(o);k =2,3...,m; (4)
o 12 g )k

To analyze the resulting system of states let's
determine the transition probabilities.

The probabilities of transition from states of the
allocated set to those of the same set remain equal to the

original ones, that is Fg s, ,(isl,iSZ )fEl.

The probability of transition from any i;sState of
the Esjallocated subset to any Ei enlarged state is equal
to the sum of probabilities of transitions from this state
to all the states of the enlarged state, that is

Nk
P'ls‘ik:Zplls,lvikszxszzl,z,...,nk_ (5)

S =1

The probability of transition from any Ex enlarged
state to any of the i;s states of the E; allocated subset is
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equal to the sum of productions of probabilities of
transitions from the Ei states of subsets to i1s by the ik
conditional probabilities of the system remaining in
these states, that is

nk —
Rk ks = Z:Ialks'lls ”iksl/zsl:f[iksl!szllnl- (6)

Here the conditional probabilities of remaining in
the Ey states of the subset are assumed to be equal to
ﬂ'ikSl =1/ N .

Finally, the probability of transition from any
enlarged Ey, state to some enlarged is Ey, state equals
to the sum of probabilities of getting into Ekz, each of
which, in turn, is equal to the production of probabilities
of transition from states E, to Ey, by the conditional

probability of remaining in the proper Ek1 state, that is

nky nky |k N
_ ks
Pk, = Z anqsl KaSo i )
_152 =1 sl_ ﬂ-|k151

The transition probabilities calculated using
formulas (5)-(7) make up the W™ matrix, which is used
to calculate probabilities of states within a

1 ) .
ﬂ-( ) :(ﬂ'ill,ﬂ'ilz,..,ﬂ'ilnl, 7Z'i2,7l'i3,...,7l'im> set using a
formula

— 7Ow @ 8)

At the second iteration, the states of the first subset
are enlarged due to a group probability equal to the sum
of probabilities obtained at the first iteration. The
second subset slims down, but all subsequent subsets
remain unchanged. The iteration cycle is repeated m
times. As a result, the first approximation to the desired
set of probabilities of system states shall be obtained.
This iterative cycle of m steps must be repeated a
required number of times. Stop criterion: the maximum
value of the modulus of the probability differences of
the same events within neighboring cycles should
become less than the specified small number.

The given procedure ensures obtaining the desired
probability distribution of the system states, however,
the rate of its convergence is unpredictable and may be
unacceptable for systems with a real number of states.

In this context, an issue of analyzing systems with
a large number of possible states remains relevant,
which initiates the continuation of studies.

Study objective: development of a decomposition
analytical method for the study of multi-threaded
queuing systems.

A feasible direction is the adaptation of the
undoubtedly promising idea of decomposition to the
design features of multi-threaded systems.

Basic material. Decomposition method for
analyzing high-dimensional multi-threaded systems.
Let's consider the technology of generating models of
multi-threaded Markov queuing systems as applied to
systems with failures.

The analysis of the simplest system, whose input
receives a single customer thread, shall be carried out
using a one-dimensional graph of states and transitions.
Unless the intensity of the input thread is equal to 4, and
the intensity of queuing is equal to x, then this graph for
an n-channel system is as follows.

OIONO

Fig. 1 A graph of states and transitions
of a single-threaded system

Unless the queuing system receives two
independent threads with proper values for the
intensities of customer threads and their queuing (A1,u1),
(%2, w2), where the ny channels are used for queuing the
first customer thread and the n, channels for the second
one, then the related two-dimensional transition graph is
as follows

Fig. 2. A graph of states and transitions
of a double-threaded system

The model of a triple-threaded queuing system
with (11, 1, N 1), (A2, w2, N2), (A3, us, N3) parameters is
a three-dimensional graph given in Fig. 3.

The dimensionality of the problem to analyze
multi-threaded systems is growing rapidly with an
increase in the number of m threads. For an r-threaded
system, the total number of its possible states

N, =1_[§:1nS which makes it really difficult to carry

out studies.

Let's note the most important feature of the graph
structure of multi-threaded queuing systems. The
complete graph of a Nmulti-threaded dimensionality
system can be naturally divided into a set of subgraphs
of smaller dimensionality corresponding to different
values of the number of channels engaged in customer
queuing from the related threads. Herewith the
subgraphs within sections for different values of the
number of occupied channels of the selected thread
differ from each other by these values only, which, of
course, simplifies the study of the system.
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Fig. 3. A graph of states and transitions of a triple-threaded system

Let's consider the technology of analyzing high-
dimensional multi-threaded systems using
decomposition procedures. The following three-stage
technology for solving the generated issue is proposed.

The first stage assumes that according to the
general principle of decomposition, the entire set of
system states should be divided into a number of subsets

{E1,Ep.....Epy}. Herewith the W transitions probability
matrix is divided into the same number of submatrices
{W1,W,,...,Wp,}. Each of arising subsets should be
analyzed in a standard way. As a result of solving the

related problems, a set of distributions of conditional
probabilities of states shall be obtained.

The second stage assumes that the probabilities of
transitions between subsets should be calculated, each
of which is treated as an enlarged state. The distribution
of states of the initial system is calculated using the
probability vector of transitions between enlarged states.

The third stage assumes that a calculation of the
desired set of probabilities of the initial analyzed system
states is carried out.

Let's consider the technology of applying the
proposed method to a specific example. Let the triple-
threaded queuing system with the two channels for each
thread be analyzed.

A graph for system states and transitions is given
in Fig. 4.
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Fig. 4. Graph of states and transitions in a triple-threaded
Markov system (A1, w1, N1), (A2, w2, N2), (A3, 13, N3).

Stage 1. The entire set of states of the Einitial
graph is divided into three Eo, E1, E2 subsets by the
number of third thread channels engaged in queuing.
The related subgraphs of states and transitions are
shown in Fig. 5 to Fig. 7.

Fig. 5. A subgraph of states and transitions in a double-threaded
system (A1, u1), (A2, w2) with a fixed number of engaged
channels queuing customer of the third thread equal to zero

Fig. 6. A subgraph of states and transitions in a double-threaded
system (1, 111), (A2, 2) with a fixed number of engaged channels
queuing customer of the third thread equal to figure of one

Fig. 7. A subgraph of states and transitions in a double-threaded
system (11, 11), (A2, i2) with a fixed number of engaged channels
queuing customer of the third thread equal to figure of two

When comparing these figures, it is clear that the
transition system structure in all three subgraphs is
identical. Thus, to search for the distributions of states,
it is enough to solve only a single analysis problem for
any of the subgraphs. Let's analyze the Eq subgraph.
This graph contains nine states {0,0; 1,0; 2,0; 0,1; 1,1;
2,1; 0,2; 1,2; 2;2}. In order to simplify the input, the
third index corresponding to the number of engaged
channels queuing customer of the third thread is omitted
here. The related matrix of So transition intensities for
the Eo subgraph is as follows

o 4 0 4% 0 0 0 0 O
wm 0 4 0O A 0 0 0 O
0 2,4 0 O O A O 0 O
4H 0 0 0 4 0 A 0 O
So={0 u, O x4 O 4 0 A O
0 0 u 0 2,4 0 0 0 X
0o 0 0 @, O O O A4 O
0 0 0 0 wmw 0 wm 0 4
0 0 0 O 0 wum 0 24 O
This matrix of transition intensities is easily
transformed into a matrix of P=(p;) transition

probabilities, using which a system of linear algebraic
equations is formed with respect to the vector of
conditional probabilities of states

0 =(”ooﬂmv”zo?”or”11:”21?7702,”1%”22)-

This system, supplemented by the normalization
condition, is as follows

o :ﬂ'op, (9)

2 2

> 2 iy =1

iy =0i,=0

The numerical solution of this system can be easily

obtained. However, the analytical solution, even for the
resulting simple system, requires tedious
transformations. At the same time, to analyze the
system described by the Eq (or Ei, or E,) subgraph, the
ideas of decomposition can be used once again. The Eg
states subset is divided into three Eqo, Eo1, Eo2 Subsets as
follows:
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E00={0,0;1,0;2,0}, En={0,1;1,1;2,1},
E={0,2;1,2;2,2}.
The corresponding sub-subgraphs are of the
following identical form

Fig. 8. A sub-subgraph of the Eo subgraph
of states and transitions

A vector of (g, 719, /y)  conditional

probabilities of states is entered in the Eqsub-subgraph.
Considering the structure of this sub-subgraph the
components of this vector are calculated using the
Erlang formula

fo = (%%%fﬁ?
Zizzo(/ll/ﬂl)l /“

It is clear that the same relations determine the
distributions of states for the Eo; and Eo, sub-subgraphs,
that is

i=0,12. (10)

(ﬂl/ﬂl)i/i? ’
Ziz:o(ﬂi/ﬂl)l /“

The next step is to calculate the probabilities of
transition between the Ego, Eo1, Eo2 Sub-subsets in
accordance with the Eq subgraph structure:

Fy = Fip = i=012 (11

Up{ Usz

Fig. 9. The Eosubgraph structure

The relations for calculating probabilities of
transition are obtained using a detailed structure of the
Eo subgraph (Fig. 5)

Ugy = 7oo A + Tyodp + Z0p =
= 2o (700 + 710 +720) = Ao,

Upp =i dp + 3o + o1 =
= Ao (o + 711 +721) = Ao,

Vg = Tg1Hp + M1y + Mo My =
=ty (Fo1 + 71 +71) =

Vo1 = 7op 21y + Mo 2y + Mpp 2y =
=24y (Figp +71p + 72 ) = 280

Accordingly, the Eostructure, given in Fig. 9,
acquires the following form available for analysis

As Ao o
E Eps Ens

Fig. 10. The Eo subgraph structure

(12)

The obtained (10)-(12) relations allow to
calculate the distribution of the system remaining in the

states of the Ego, Eo, Eoosubgraphs. Let's enter the
corresponding to =(too, to1, to2) wvector, whose
components are determined using the Erlang formulas:

(/12/#2)]/]_!
> (/) /it

Then the distribution of states for the Eg
subgraph is as follows.

0j = ,i=012.  (13)

70 = Zootoos 710 = #10too: 720 = Z20too;
7o1 = Zortor; 711 = Mators 71 = Toator; (14)

702 = 7oplo2: M1 = Mioto1: o0 = 7oolp);

(/) /it Cale) it
S o)) it 5 oal)) it

It is clear that the analysis carried out for the E o
subgraph can be repeated for E; and E, subgraphs as
well. In addition, the same distributions as above can be
obtained when calculating the probabilities of
transitions between Eo, E1, E2. As one can easily see in
Fig. 4 these distributions assume that the subgraph
structure of the initial graph of states and transitions has
the form given in Fig. 11.

ﬂ'ij =

Fig. 11. The subgraph structure of the Egraph
of states and transitions of systems

Let's enter the W = (Wo, Wy, W5) vector  of
probabilities of the system remaining within Eo, E1, E;
subsets. As before, the components of this vector are
determined using the Erlang formulas:

W, = (/1) k!
32 (Ga/us) [kt

Now, considering remarks from above and based
on (15), (16) let's write the final relations determining
the distribution of states of the analyzed triple-threaded
Markov system having two queuing channels for each
thread.

This distribution is as follows:

k=012 (16)

Tijk = %/ﬂ—ly/ll x
Zizzo(ﬂl/#l)l/“
(22/12)" /1 (4s/ 1) J

x _ ,(17)
Z?zo(ﬁz/ﬂz)l/ﬂ Zizo(ﬂe/ﬂs)k/k!
i=012;j=012,k=0,12.

The problem is solved.

It is clear that the proposed technique easily
applies to the case of analyzing a queuing system, the
input of which receives a superposition of m threads
with (4, ), i= 1,2,...m parameters. Customer entering
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input are queued by a system that has n; channels for the
related i-th thread 1=1,2,.m. Let's enter a vector
(i1, i2,..., im), the is component of which determines the
number of channels engaged in customer queuing of the
s-th thread, s=1,2,..,m.

Then, similar to (17), the distribution of states of
the system is determined by the following relations:

Ty, i = M y
o Zizo(il/m)ll/il!

(lZ/ﬂZ)iz/i_Z! (/lm/ﬂm)im/i.m! - (18)
zizzzo(ﬂe/ﬂz)lz /iZ! Zizmzo(lm/ﬂm)lm /im!

u (ﬂvs/ﬂsl)is /is!

Zizo(/ls/ﬂsl)is /is! |

The relative simplicity of the result obtained is due
to the use of a rather hard limiting: a number of
channels for customer queuing of each thread is fixed.
The removal of this customer, which shall occur unless
each channel is adapted to customer queuing from any
thread, complicates the situation to some extent.

Let's consider a method for solving the problem
arising in this case on a concrete example of analyzing a
double-threaded system with 4 1, « 1), A 2 u 2)
parameters and a total number of n queuing channels.
Such graph of states and transitions is given in Fig. 12.

Under the given decomposition technology, let's
divide the entire set of states into Eo, Ey, ..., Ek..., En-1,
E, subsets by the number of channels engaged in
customer queuing of the second thread.

The related graph of states and transitions is given
in Fig. 13.

Let's calculate the conditional distribution of states
for each of the Eo, Ei,...,En subsets using the Erlang
formulas.

Ay

2uz (n-1)uy

Fig. 12. A graph of states and transitions
of a double-threaded system with n queuing channels

Upq Uqz uzs
V10 Vaq Vs

u

1.k Uk ke+1 Un-2n-1 Un-1n
Vic k-1 Vie+1 k Vn-1.n-2 Vin.n-1

Fig. 13. A graph of states and transitions
for a grouped set of states
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The conditional distribution of states for Eq is as
follows.

P (ﬂl/#l)i/” -

i0 = n — ,1=0,1,2,...,n (19)
zizo(ﬂﬂ./ﬂl)l /I!
The conditional distribution of states for Ei:
i .
il
ﬁilz/#/lzo,l,z,...,n—l. (20)
| 0 )“l//ul /Il
The conditional distribution of states for Ex:
(/) [it
ﬁik= 1/ﬂ1 / i=012..n-k (21)
i 0 /11/#1 /"
The conditional distribution of states for En-1:
. () () i
Tin1= 21 T 1s / ,i=0,1. (22)
S o(ajm) it Talm
The conditional distribution of states for Eo:
i =1. (23)

Now let's calculate a set of transition probabilities
between subsets:

UOl = TEOO}\.Z + 7'510}\.2 +...+ nn,1'07»2 =

n-1 (24)
=%y Y Tio,
i=0
n-1
V1o = ToiHo + Mo +...+ g 1M = Ko zﬂiL
i=0
n-2
Upp = TEOJ_?\.Z + TC117\.2 +...+ 7'Cn_1’27\.2 = 7\.2 ZTCiz,
i=0
n-2
Vo1 = tgp 2Mp + iy 2M +...+ g1 225 = 215 D i,
i=0

Ut = Roie—1Ap + Tagqhp +oo o+ ingagk-1ho =
n—-k+1

=Ly D Rk,
i=0
Vi k-1 = TiokKpp + kg +... 4+ Tty g kK =
n—k
=kup > Tk,
i=0
Un_1,n = Tion_1ho + Typahp +...+Tn_g Ao =
n-2
=% ) Min1,
i=0
Vn,n-1 = Tion MMt
The resulting set of transition probabilities

between subsets of states allows to find out the
distribution of related probabilities.

Let's make up a system of Kolmogorov equations
with respect to the PO, P1,..., Pn probabilities of the system
remaining within EOQ, E1, E2,...,En subsets, we have

—Up1 Py +VvoP =0,
Ug1Py +Vo1Po =P (Uip +vi0) =

0
Upp P +V32P3 — Py (Upg +Vo1) =0,

U1k Bt + Vi e —

R (“k,k+1 +Vk,k_1)=0, (25)

Un—2.n-1Ph—2 +VanaPh —
—Fha (Unfl,n "’anl,nfz) =0,
Un—1,nPh1 +Vnn-1Ph =0.

In order to simplify the analytical description of
the system of algebraic equations (25), let's enter
additional variables

Yk = Uk Fo1 —VikaFo k=12,....n
By substituting (26) into (25), we obtain
y1 =0,
y1—Y2 =0,
Y2—-Y3=0,

(26)

@7)

Yk = Yk+1 =0,

Yk = Uk-1,k P2 = Vi k2P = 0.
Equation (28) sets the recurrence relation

(28)

kR k=12..n
Vi k-1

Therefore we obtain

(29)

u
R=—"R,
Vio

P, =12p,

Vo (30)
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Using a sequential system of substitutions of the
subsequent relation from (30) to the previous one, let's
express all the probabilities obtained by means of Po.
We have

_ H:z us—l,s

Now, combining the (19)-(22), (24), (32)
relations, let 's write the unconditional probability of the
Eix state

p, - U2lo1 o 7
VioVa1 Hiz Vs s1
_ Uggthp .- Uk k P —
= =
V1oV21 -+ Vi k-1
Hk ! (31)
A3 e gy 12n K *
Hk Vs,s-1 1+ H SR
s=1'S:S ZK =1
H _1Vs s-1
n i=012,...,n;k=0,12,...,n;i+k <n.
Hszlus—l,s
Ph=—r—h The problem solution is completed.
HS: Vs,s—1 The principal advantage of the proposed method of
N analyzing high-dimensional systems is to reduce the
.T.O s.earch for Po, we use the normalization solutions of initially complex problems to a sequence of
condition: significantly simpler ones. Herewith, the method
ensures an accurate solution of the problem. The further
Z - 1+Z S 1 Us-1.s Ry =1. studies direction: spreading the proposed approach for
k=0 = 1H Vs 1 the analysis of multi-threaded systems with thread
5= priorities, whose relative importance is estimated by the
Therefore pair-wise comparison method [14].
3 1 Conclusions
H _Us—1s 1. A method of analytical solution of the problem
1+Zk =1 of analyzing high-dimensional Markov systems has
H s=1/s,s-1 been proposed. The computational pattern of the method
Then implements the decomposition of the initial problem to
a set of significantly simpler problems, the analytical
H:_ Us_1s solution of which is possible.
Hk‘i 2. The principal advantage of the method is that
_Vs,s-1 the proposed technology can be established
= = k k=012...n (32) hiergrcﬁically. Herewigt]%/, the enlarged sets of states
1+ z H 1 1lg—g"s-1s Us—1s obtained following the first stage of the hierarchy can be
k= 11—[ v divided into sub-subsets once again, unless required by
s=1s:s71 their dimensionality.
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AHaJi3 6araTonoTO4YHMX MapKiBCbKUX CHCTEM
JI. T'. Packin, JI. B. Cyxomuus, JI. O. Caraiinaunwmii, P. O. Kopcyn

AHoTaunisi. Bimomi TexHomorii aHamizy MapKiBCHKHX CHCTEM BHKOPHCTOBYIOTH HOOpe MpAIIOI0YHMi MaTeMaTHIHHN
arapar, 10 CIIUPAEThCs Ha OOYHMCITIOBANIbLHY pealli3allilo OCHOBHOI MapKiBChKOi BIACTHUBOCTI. BHHHKaioui npy 1bOMy CHCTEMH
JHIHHAX anreOpaluHUX PiBHSIHB JIETKO BHUPINIYIOTHCS YHMCETIBbHO. PasoM 3 TuM, mpH BHpILIeHHI 6araTboX MPaKTHYHUX 3aBIaHb
L[LOTO YHCEIBHOTO PillIeHHs] HeA0CTaTHRO. Hanpukiaz, y 3ajaqax CTPYKTYpHOTO Ta MapaMeTPHYHOr0 CHHTE3y CUCTEM, a TAKOX Y
3aBJAHHAX YMOPaBIiHHA. Y I[HUX 3aBJAHHAX HEOOXIiHO OTPUMATH AHATITHYHI CIIBBIHOIICHHS, IO OMHCYIOTh 3aJICKHICTH
3Ha4eHb MMOBIPHOCTEH CTaHIB aHAII30BaHOI CHCTEMH 3 UYHCEIbHUMH 3HAa4eHHSAMH 11 mapaMerpiB. CKIAIHICTh aHAJTITHYHOTO
PO3B'sI3aHHS BIATOBITHUX CHCTEM JiHIHHHX anreOpaiuyHuX piBHSHb MIBHIKO 3pOCTa€ 31 30UIBHICHHSAM PO3MIPHOCTI CHCTEMH.
Came mneil (eHOMEH TPOSBIAETbCS OCOONMMBO JEMOHCTPATHBHO IIifi Yac aHaji3y O0araTolOTOKOBHX CHCTEM MacOBOTO
obciyroByBaHHS. BimmoBimHO 10 mBOro Mera poOOTH — po3poOka e(EeKTHBHOTO OOYMCIIIOBAIFHOTO METOAY OTPUMAaHHS
aQHATITHYHUX CITiBBiZHOLIEHD, SIKi 320€3MEeUyI0Th MOXKIINBICTh aHATI3y MapKiBCBKUX CHCTEM BHCOKOT PO3MIpHOCTI. Y poGOTi st
aHali3y TaKHUX CHUCTEM PO3POOJICHO NEKOMITO3MI[IMHMH METOX, 3aCHOBaHMI Ha ifel ()a30BOr0 YKpYHMHEHHS CTaHIB CHCTEMH.
3anporoHOBaHUIi Ta OOIPYHTOBAHMII METOJ| JO3BOJSAE OTPUMATH AHAJITHYHI CIHIBBIAHOIIECHHS U PO3PAaxyHKY PO3IOALTY
HMOBIpHOCTEH CTaHiB MapKiBCBKHX cucTeM. Meroa Moxe OyTH e(eKTHBHO 3aCTOCOBAHW AJIs BUPIIICHHS 3aBIaHb aHANII3y Ta
YIPaBIiHHS B MAPKiBCHKUX CHCTEMaX BUCOKOI po3MipHOCTi. Po3risiHyTO mpukima.

Knw4oBi caoBa: 0araTomoTokoBi cucTeMH OOCITyrOBYBaHHS; BHCOKa pPO3MIPHICTh, IEKOMIO3ULIHHUII MeTon
YKPYITHEHHS CTaHiB.

AHAJIN3 MHOT'OIMIOTOKOBBIX MAPKOBCKHUX CUCTEM
JI. T'. Packun, JI. B. Cyxommun, [I. O. Caraiinaunsiii, P. O. Kopcyn

AHHOTamus. lI3BecTHBle TEXHOJOTMHM aHaIM3a MApKOBCKHX CHCTEM HCIOJB3YIOT XOPOIIO  pPabOTaIOIIHiA
MaTeMaTHIeCKHH ammapar, ONHPAIOIIUICS Ha BBIYUCIUTENBHYIO PEaM3aIl[Mi0 OCHOBOIOJATAIONIETO MapKOBCKOTO CBOWCTBA.
Bo3Hnkaromue npy 3TOM CHCTEMBI JIMHEHHBIX anreOpanvecKuX ypaBHEHHUH JIETKO pEIIaloTcs YHCIeHHO. Bmecte ¢ Tem, mpu
pelIeHrr 0YeHb MHOTUX MPAKTHYECKUX 33134 9TOTO YHCICHHOTO PelIeHus HelocTaTouHo. Hanpumep, B 3aja4ax CTPYKTYPHOTO
U TIapaMeTPUUECKOro CHHTE3a CHCTEM, a TaKoKe B 3aJayax ymnpasieHUsA. B 3Tux 3a7adyax HE0OXOIUMO MOIYYUTh aHATUTUYECKHUE
COOTHOILICHUS, ONHMCHIBAIOIINE 3aBUCHMOCTH 3HAUCHUH BEPOSITHOCTEH COCTOSHHH aHAIN3UPYEeMOW CHUCTEMBI C YHCICHHBIMH
3HaueHUsIMU e€ mapameTpoB. CIIOKHOCTh aHATUTHYECKOTO PEIICHHS COOTBETCTBYIOLIMX CHCTEM JIMHEHHBIX anreOpandecKux
YpaBHEHHI OBICTPO pPacTeT C yBENMUCHHEM pa3MEPHOCTH CHUCTEMEL. VIMEHHO 3TOT ()eHOMEH IpOSBISIETCS B OCOOCHHOCTH
JIEMOHCTPATHBHO TIPH aHAIN3¢ MHOTOIOTOKOBBIX CHCTEM MAacCOBOTO OOCIYKHBaHHA. B COOTBETCTBHM C 3THM Iielb pabOTHI —
pa3paboTka >(P(EKTHBHOrO BEMHCIUTEIHFHOTO METOAA TONYYEeHHsS aHATNTUYECKUX COOTHOIICHHH, 00ecrednBaromux
BO3MOXKHOCTh aHaIM3a MAapKOBCKHX CHCTEM BBEICOKOHM pa3sMepHOCTH. B pabore [ aHanmm3a TakWX CHCTEM pa3paboTaH
JCKOMIO3UIIMOHHEIH METOJ, OCHOBAaHHBI Ha wmaee (a3oBOro YKPYNHEHUS COCTOSIHHUM CHCTEeMBL. IIpe/utoKeHHBIH WH
00OCHOBAaHHBI METOJ MO3BOJSIET MONYYUTh AHATUTUUECKHE COOTHOIICHHUS [N pacdyeTa paclpeseNieHHs BEepOsITHOCTEH
COCTOSTHUI MAapKOBCKHMX CHCTEM. MeToa MoeT ObITh 3()(EKTHBHO NMPUMEHEH JUI PELICHUs 33a1ad aHajlu3a U YNPaBICHUS B
MapKOBCKHMX CHCTEMax BBICOKOH pasmMepHocTU. PaccMoTpeH npumep.

KnodyeBble ca10Ba: MHOTONIOTOKOBBIE CHCTEMBI OOCITY)KMBAHHMSI; BBICOKasl pa3MEPHOCTh; AEKOMIIO3UIUOHHBIN METOJ
YKPYIHEHHSI COCTOSTHUM.
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