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AUTOMATED PENETRATION TESTING METHOD
USING DEEP MACHINE LEARNING TECHNOLOGY

Abstract. The article developed a method for automated penetration testing using deep machine learning technology. The
main purpose of the development is to improve the security of computer systems. To achieve this goal, the analysis of existing
penetration testing methods was carried out and their main disadvantages were identified. They are mainly related to the
subjectivity of assessments in the case of manual testing. In cases of automated testing, most authors confirm the fact that there
is no unified effective solution for the procedures used. This contradiction is resolved using intelligent methods of analysis. It
is proposed that the developed method be based on deep reinforcement learning technology. To achieve the main goal, a study
was carried out of the Shadov system's ability to collect factual data for designing attack trees, as well as the Mulval platform
for generating attack trees. A method for forming a matrix of cyber intrusions using the Mulval tool has been developed. The
Deep Q - Lerning Network method has been improved for analyzing the cyber intrusion matrix and finding the optimal attack
trajectory. In the study, according to the deep reinforcement learning method, the reward scores assigned to each node,
according to the CVSS rating, were used. This made it possible to shrink the attack trees and identify an attack with a greater
likelihood of occurring. A comparative study of the automated penetration testing method was carried out. The practical

possibility of using the developed method to improve the security of a computer system has been revealed.
Keywords: machine learning; software security; automated penetration testing.

Introduction

Using computer systems in almost all in all areas
in social life and the increase in the number of
information security incidents have updated the problem
of data and software protection. One of the ways to
improve cybersecurity is through the use of penetration
testing methods and tools. This applies both to the areas
of real production and practical services, and to the area
of software development.

Until recently, penetration testing was done
manually. At the same time, first of all, based on their
own experience and erudition, the testers needed to
analyze the computer system to detect vulnerabilities.
Only then can you enter the system and compromise the
software. This is a rather laborious task, on the one
hand, it requires a large amount of tester knowledge,
and on the other hand, it has many risks of a subjective
nature. Therefore, more and more organizations have
recently been using penetration attack planner options
based on automated targeting system models. So, for
example, the company Core Security using this idea
since 2010 in its tool Core IMPACT uses the attack
planner MetricFF [1]. In addition, Core Security began
the practice of implementing certain ethical cyberattacks
in accordance with the known exploits of software
vulnerabilities [2]. However, no uniform solution has
been obtained for penetration testing procedures.

One of the ways to solve this contradiction is to
use attack tree methods. These methods are based on the
provisions of the theory of graphs by Bruce Schneier
[3], which introduced the informal concept of attack
trees to systematize and categorize various attack
scenarios on computer systems.

By analyzing the attack tree, penetration testers
can visualize and understand the interaction between
attack patterns. For example, the paper [4] proposes a
graph-based approach for modeling and detecting

attacks. At the same time, transitions from state to state
along the extended attack tree are characterized by the
attributes of the TTL lifetime and the degree of PC
confidence. The first attribute reflects the temporal
dependencies between the stages of the attack and helps
to reduce the number of false positives of the cyber
intrusion  detection system. The second one
characterizes the probability of achieving the goal with
the achieved sub-goals. It should be noted that such a
prototype of ethical cyber intrusions illustrates attack
scenarios, but does not reduce the number of false
positives. In [5] A formal definition of information
attack trees is given [6] using disjunctive Petri nets. In
this model, places correspond to attacks, and transitions
often express logical dependencies, thereby simulating
the actions of intruders, which extends this model
compared to Schneier's attack trees.

The studies carried out have shown that
simultaneously with the study of models and methods
for synthesizing attack trees, it is advisable to analyze
them. This is a prerequisite for optimizing and reducing
their visual complexity. The result of the analysis is
determined by the purpose of the attack graph. For
penetration testing examples, such analysis should find
the most likely attack scenarios for the attacker.

Among the many methods for analyzing attack
graphs, the following can be distinguished. The authors
of paper [7] define the shortest paths to goals using
Dijkstra's algorithm. The set of least cost paths is also
computed by the Naor-Brutlag algorithm. It is shown
the problem of determining numerous effective
protection measures (by cost) is NP-hard. The following
interactive technique is proposed: the administrator
changes the network model in the configuration file in
accordance with the adopted security measures, and
then recalculates the shortest paths to see if these
changes have increased the security level of the network
or not. However, the authors of the article created a
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realistic-sized attack graph based on 10 or 20 patterns,
and did not resolve all the problems associated with
matching patterns with the attacker's configuration and
profile. In addition, the presence of attack patterns and a
configuration file can also be another vulnerability. If
they fall into the wrong hands, they can be valuable
tools for an attacker.

And in paper [8] the author conducts an analysis
aimed at finding the minimum critical set of attacks - a
set of attacks of the lowest power, the removal of which
from the violator's arsenal will make it impossible for
him to reach the goal. It is shown that the problem of
finding such a set is NP-complete, and a “greedy”
heuristic algorithm for solving it of complexity O (mn)
is proposed, where m is the number of states and edges,
n is the number of attacks. At the same time, as the
authors themselves note, the presented development
does not cover the entire variety of methods for
analyzing and optimizing graphs, which presents an
opportunity for researchers to further improve.

In [9], to solve the problem of analyzing an attack
tree, the authors used the machine learning method. At
the same time, Q was taken as a basis - training for
finding the trajectory of attacks. However, the
insignificance of the action space and the sample space
reduced the practical value of this development.
According to several authors [10], deep reinforcement
learning is a useful advancement in attack tree analysis

for penetration testing. For example, in paper [11], the
task of analyzing and optimizing the attack graph using
this intelligent technology is performed. At the same
time, the width of the spectrum of possible
vulnerabilities, as well as the shortcomings of
penetration testing automation methods to ensure the
security of computer systems

The aim of the work is an automated penetration
testing method using deep machine learning technology.
For this, it is necessary to solve a number of particular
scientific problems:

1) Explore the factual data collection capabilities
of the Shadov system for the design of attack trees, as
well as the Mulval platform for generating attack trees.

2) Develop a method for forming a matrix of
cyber intrusions using the Mulval tool.

3) Improve the Deep Q - Lerning Network
method for analyzing cyber intrusion matrices and
finding the optimal attack trajectory.

4) Conduct a comparative study of the automated
penetration testing method.

The general structure of the method can be
represented as a set of methods and tools in Fig. 1. As
shown in Figure 1, the structure of the method implies
the presence of three components: a set of technologies
and means of forming an attack matrix; deep
reinforcement learning for processing attack matrix
data; tools, platforms and penetration testing tools.

a set of technologies and tools for forming an attack matrix
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Fig. 1. General structure of the automated penetration testing method

1. Investigation of the capabilities
of the Shadov and Mulval platform

It is known that the Shodan system is designed to
work with shadow Internet channels. The system is not
looking for web resources with content, but physical
devices connected to the Internet. These can be printers,
webcams, routers, GPS navigators, and even commercial
maintenance systems. The basic principle of Shodan is to
send requests to all publicly available IP addresses and log
their responses. Algorithm for scanning this system:

1) generating a random IP address;

2) selection of a random port number from the list
of ports available in Shodan;

3) checking the selected IP-address (port) and
getting a banner;

4) repeating step 1.

Thus, the system scans the entire address space at
random to ensure even coverage of the Internet and
prevent data from shifting at any time. Shodan also
supports searching for information about software
vulnerabilities [12].

The system also allows you to select several
criteria for searching and filtering data to monitor the
current state of the IS. The main Shodan filters are: City
/ country (filtering devices located within the specified
city / country, for example city: minsk); Port (output
devices with a given open port, for example port: 443);
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OS (filtering devices that run on a given operating
system, for example os: linux); Geo (exact indication of
the coordinates of the device location (longitude,
latitude), for example geo: 42.9693,74.1224); Net
(search for devices from a given range of IP addresses,
for example net: 216.0.0.0/16) [12].

Mulval is a widely used network security analysis
tool that uses a vulnerability scanner to find network
vulnerabilities and then generates attack graphs for
security analysis [6]. The block diagram of the
framework is shown in Fig. 2.

Principal and
Data Bindi

=

Security policy |

violation &
1 :: attack trace

i ICAT | Interaction Prolog Environment
1 database | ! Rules '
OVAL OVAL e OVAL
definition Scanner Scanner
_______________ Network
Host 1 Host 1 Configuration

Fig. 2. Block diagram of Mulval framework

2. Development of a method
for forming a matrix using the Mulval tool

2.1. A method of forming an attack tree. Having
received an informal concept in 1999 in the work of
Bruce Schneiter, attack trees, as a methodology for
describing security threats, are now widespread. The
attack tree is characterized as follows: the root of the
tree corresponds to the intruder's goal, and the vertices
correspond to the intruder's actions to achieve the goal.
Actions are combined using logical AND and OR.
Vertices and edges can be assigned different numbers,
all values that characterize the probability of success,
complexity, cost of the offender's actions. In Fig. 3
shows a graph and a textual representation of each of
the possible types of nodes, AND and OR.

graf text graf text
GO goal G0 GO goal &0
AND Gl OR Gl
G2 G2
G3 G3
Gl G2 G3 Gl G2 G3

Fig. 3. Graph and text representation of each
of the possible node types, AND and OR

Considering the above facts, it should be noted that
the first stage - modeling of the attack tree, is very
important for the formation of training data. This data,
in turn, is extremely important for use in deep learning
algorithms. For the formation of input data in the work,
it is proposed to perform the following relevant stages.

1) Gathering network information to simulate a
network environment using Shodan.

2) Generation of an attack tree corresponding to
this network environment using the Mulval platform.

3) Data preprocessing

. ’ "info": "(CentOS)",
(formation of a matrix of

“ip_str": 192.168.1.1,

attacks) to adapt to the |.[SP:HINet

requirements  of  deep |“port": 443,

learning algorithms. "fr;%dsl;%t'r'ti,'_'ﬁtggﬁhe httpd",
The first step is to version™: "2.2.15",

generate  the  necessary | .vulns”:{

. . "CVE-2010-1452",
practical query in the Shodan N

system, such as a query for |}
information on real Web
servers. An example of data
collected through Shodan
(excluding IP addresses) is shown in Fig. 4. Based on
the data obtained, a profile file is created with the
necessary information about the network node. An
example of a web server profile is shown in Table 1.

Fig. 4. Sample data
collected via Shodan

Table 1 — Example of a web server profile

Product Port = Protocol | Vulnerability 0s
Apache 80 https | CVE-2010-1452 = CentOS
Nginx 8080 | https | CVE-2011-0419  Ubuntu
mt-daapd

DAAP 3689 tcp CVE-2017-9617 FreeBSD

In addition to the dataset presented in Table 1, a
vulnerability file is also generated. The data includes:

- identifier number of vulnerabilities CVE,
Microsoft, etc.

- component of the basic scoring type

- exploitablityScore fitness score component

Table 2 provides an example of a vulnerability
dataset. At the second step of generating the attack tree,
it is proposed to use the well-known Mulval platform.
The Mulval model is based on logic programming and
is described using the DataLog language, which is a
dialect and a subset of the Prolog language.

This language is implemented by the IDE XSB.
When generating on the basis of Mulval, the following
types of objects-vertices of the attack graph are
distinguished - inference vertices (inference rule) and
fact vertices (rules are predicates that determine the
values and type of action prototype). The semantic
meaning of the scenario stage lies in the logical
following "Conjunct — Fact", which allows you to
determine when the selected predicate has the value
"true". A conjunct is a logical conclusion.

An example of generating an attack tree using the
Mulval tool is shown in Fig. 5.

2.2. Algorithm for transforming an attack tree
into a cyber intrusion matrix. The next component of
the automated penetration testing method being
developed is an algorithm for transforming an attack
tree into a cyber intrusion matrix. For the research, the
algorithm for transforming the attack tree into the
corresponding matrix, developed by the authors [10],
was chosen as a prototype. The study of the method
carried out on the basis of [10] made it possible to make
a choice about the limitations of its use for penetration
testing. This is largely due to authors's neglect of inputs
such as "file access”, "command execution”, and
focusing only on vulnerabilities.
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Fig. 5. An example of an attack graph scenario
developed using the Mulval tool

Below is a description of the improved algorithm
for transforming attack trees into a cyber intrusion
matrix. At the first step of the algorithm, all nodes in the
attack tree are matched into a matrix form.

At the second step, the complex compares
quantitative scoring of security vulnerabilities to the
baseline scoring of the corresponding nodes. The
baseline score is calculated in accordance with the
CVSS (Common Vulnerability Scoring System)
structure. According to [13], the scores are calculated
using special formulas based on metrics and
characterize the ease of deployment of an exploit and its
impact on a computer system. As an improvement, it is
proposed to superimpose on the base CVSS score some
predefined exploitability score, (for example, "file
access") in accordance with the expression:

ovsc = bsc x exgsc , 1)

where ovsc — overall security vulnerability scoring,
bsc — baseline security vulnerability scoring, expsc—

serviceability scoring.

At this step, instead of embedding the cyber
intrusion matrix directly into the deep machine learning
algorithm, it is proposed to simplify this matrix using a
modified DFS algorithm - Tarjan's algorithm [14]. This
algorithm is primarily one of the options for depth-first
search. In this case, the vertices are visited from roots to
leaves, and the end of their processing is performed on
the way back.

This simplification of the complete matrix allows
you to select only those nodes that can be used to
achieve the target of the attack.

At the end of the execution of the Taryan
algorithm, the third step is to form a simplified cyber
intrusion matrix, in which the following are written:

- score values for the start node in the first column;

- the values of the total scores characterizing the
intermediate stages in the intermediate columns;

- the score values for the end node in the last
column.

This data will be used as input to evaluate the
reward in the deep machine learning algorithm.

2.3. Deep Reinforcement Learning to Determine
the Optimal Attack Trajectory. In the developed
method of automatic penetration testing, the method of
deep reinforcement learning is used to determine the
optimal attack trajectory through continuous learning.

The input data for the method is formed on the
basis of a simplified cyber intrusion matrix, and the soft
max function, a logistic function for the
multidimensional case, will serve as the prototype of the
activation function:

v(z), = ezi/ZL(:leZk , (2)
where K — is the number of classes.

During training, a deep reinforcement learning
(DQL) model agent acts as an ethical hacker, while the
targeted system is represented as a simplified cyber
intrusion matrix. The agent moves from node to node in
the developed matrix until it reaches the desired result -
the "victim's server". The bonus factors used in the DQL
modeling process correspond to the values of the
vulnerability assessment based on the data of the
Common Vulnerability Scoring System (CVSS) (1). In
CVSS, a baseline assessment interprets the severity of the
negative impacts of particular types of vulnerabilities,
while an exploitability assessment captures the potential
for exploitation of that particular vulnerability. To obtain
the most appropriate result from a practical point of view,
it is advisable to carry out mathematical weighting of
these estimates by multiplying by the appropriate
coefficients. The values of the coefficients are determined
empirically, taking into account the opinion of experts in
the field of cybersecurity.

2.4. Experimental studies of automated
penetration testing method. To assess the performance
and effectiveness of the developed method of automated
software penetration testing, a series of experiments was
carried out. In this case, the targeted system was
presented in the form of a topological structure of a
computer network in Fig. 6.

From the presented diagram, it can be seen that the
targeted system is a collection of three different
services, including a web server and mail server on one
subnet, as well as a file server on another subnet. The
client on the first subnet is controlled by Windows
2000, and the client on the second subnet is controlled
by Internet Explorer. In the presented diagram, a
workstation with Acrobat software is also connected to
the same subnet with the file server.

As a means of protecting a computer network from
cyber intrusions, a firewall is used in the scheme.

The rules for connecting to this tool are as follows.

1. The agent is located in the external network and
has the ability to access the web server through the
HTTP protocol and the corresponding HTTP port.

2. There is a dual connection between the web
server and workstations on the network.

3. Web server and file server are connected via
NFS protocol.
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Fig. 6. Topological structure of the investigated computer network

4. The output of the file server of the first and
second subnets to the external network is carried out
using the HTTP protocol.

5. The file server and workstation are connected
via the NFS protocol.

The studies show that this topology is
characterized by several software vulnerabilities. For
example, according to experts, one of the most
dangerous web server vulnerabilities (CVE-2020-1198)
is a buffer overflow vulnerability in the mod_uwsgi
module. An attacker can cause a denial of service and
execute arbitrary code.

Clients on the first subnet could be vulnerable to
attack by an attacker due to the CVE -2016-0189
vulnerability in the known Vbscript.dll component. This
vulnerability allows a hacker to expose arbitrary code.
Clients of the second subnet are susceptible to remote
code discovery attacks in the scripting engine supplied
with the Internet Explorer browser (vulnerability CVE-
2020-1380). The file server contains the CVE-2010-
0492 vulnerability, which is associated with Windows
2003 SP 2. In this case, an attacker has the ability of
implementation an attack bypassing the limitations of
the original 1IPV4 address. Table 1 shows the indicated
vulnerabilities of the system under study.

Table 1 — Vulnerabilities of the studied system

List of vulnerabilities

CVE-2020-1198
CVE -2016-0189
CVE-2020-1380
CVE- 2010-0492

Hardware

Web server
First subnet
Second subnet
File-server

Using the Mulval system, we will generate a graph
of attacks on the studied computer system. Fig. 7 shows
the generated attack graph. As shown Fig. 7 using
Mulval, a graph scheme with three different types of
vertices is formed. The vertices shown as rectangles
characterize the configuration of the system. The

diamond vertices represent potential privileges or access
that an attacker could gain on the system. Elliptical
nodes associate preconditions with postconditions.

The next step in the research was the procedure for
simplifying the attack graph. Fig. 8 shows a refined
attack graph using algorithms developed by the authors
of the research [11].

The graph shown in Fig. 8 can be based on
modeling using the method of deep reinforcement
learning. In this figure, the location of the agent,
vulnerabilities and targets of the attacker agent are
represented as vertices, and each edge of the graph
illustrates the capabilities of the agent and its actions. It
is assumed that an attacker can move between nodes in
any direction of the graph until he reaches one of the
target states. It should be noted that in the developed
automated penetration testing method, the general
vulnerability rating system (CVSS) is also used to
determine rewards in accordance with expression 1.

If a malicious agent exploits a vulnerability, then the
overall score associated with that vulnerability will be
considered a reward value. If the agent ultimately
achieves the goal, then the reward will be considered the
maximum. Additional looped edges are added to the
vertices of the target with a reward of 100, since the agent
who reaches the malicious target remains there forever.
The rewarded DQL model is shown in Fig. 9. As an
example, let us simulate a situation when a malicious
agent is located at one of the points of a computer
network. In Fig. 5. this point is denoted by node 12. This
agent has the ability to move to other nodes (13, 21, 25
and 43), while each of his actions receives a bonus in
accordance with the metrics of vulnerabilities.

Let the agent perform malicious actions starting
from node 43. In this case, there are two options:

- go to node 34, which is the ultimate target of the
cyberattack. In this case, the agent receives 100 points;

- return to the starting position and do not receive
additional points.
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Attacker Node Simulator : 12
12 Simulating vulnerability nodes : 13, 21, 25, 43
target : 4, 15,23, 34
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Fig. 9. Rewarded DQL Model

Let's form a generalized matrix of states in the form
of a table 2. Table 2 rows represents the state of the system
columns - actions. For example, matrix point 12, 43
illustrates the transition of an agent from node 12 to node
43, while receiving bonuses in the amount of 6 points. The
algorithm for assessing the attacker's behavior is presented
in the form of a flowchart in Fig. 10. It should be noted that
the state matrix transition graph is used in this algorithm.
For the purpose of practical implementation in accordance
with the algorithm in Fig. 10 from the state matrix table 2 a
submatrix of state clarifications and additional bonuses to
the attacking agent is formed, which can be illustrated in
the form of table 3.

Table 2 — Generalized matrix of states

12 |13 |21 |25 |43 |4 15 |23 |34

( START h
( )
N /

:

State/Reward (Environment) Matrix (R) isa
nxn and n is the number vertices in transition
graph, Discounted factor ( y)
States/Actions: State: S te S Action: Ate A

all goals in the
transition graph

r =remove rows and columns
of all goals except the current
goal from matrix R

|

Initialize Q as Os (arbitrarily
for all state-action pairs in r)
8:\\ Q Calculation

each Exploration

A 4

Attacker’s optimal
action selection
policy to
compromise
security of the
network (Matrix Q)

Select a random initial state
(SteS)

current state !=goal
state

Select one action from all
possible actions for the current
State

h 4
Take the action and observe
the outcome state
and reward

Fig. 10. Flowchart of an algorithm
for assessing the behavior of an attacker

Table 3 — Submatrix of state clarifications and additional
bonuses to the attacking agent

12 13 21 25 43 | 4
12 -1 7 8 9 6 |-1
13 0 -1 -1 -1 -1 | 100
21 0 -1 -1 -1 B
25 0 -1 -1 -1 B
43 0 -1 -1 -1 B
4 -1 0 -1 -1 -1 | 100

12 |-1 |7 8 9 6 -1 (-1 (-1 |1
13 |0 -1 |1 |1 (-1 100 |-1 |-1 |-1

21 |0 -1 -1 |-1 (-1 |-1 |100 [-1 |-1

25 |0 -1 -1 |-1 (-1 |-1 |-1 100 |-1

43 |0 -1 -1 |1 (-1 |-1 |-1 (-1 |100

5 |-1 |-1 |0 -1 |-1 (-1 |100 |-1 |-1

23 |-1 |-1 |-1 |O -1 -1 |-1 (100 |-1

34 (-1 |-1 |-1 |-1 |0 -1 |-1 (-1 |100

Using this matrix, we will form a diagram of the
bonuses of the attacker agent for one of the stated goals. In
fig. 11 illustrates a graph of bonuses to an agent when
moving to target state 1. As shown in Fig. 11, the transition
from state 12 to state 13 gives the maximum reward 408.
The transition from state 13 to the state that characterizes
the ultimate goal of the attacker is formalized by the
maximum bonus 500. The transition 12, 13, 4 is preferable
in terms of earned bonuses.
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Fig. 11. The graph of bonuses to an agent
upon transition to target state 1

A number of other practical examples of the
results of using the developed automated penetration
testing method for ethically compromising targets in a
computer system are presented in Table 4. The
presented table demonstrates the tester's capabilities in
taking into account the maximum damage. This allows
you to rank vulnerabilities in the system and eliminate
them depending on their priority. Thereby it increases
the efficiency of the testing process.

Table 4 — Practical examples of the results of using
the automated penetration testing method

Attacker Node Simulator | Target Maximum reward
12 4 908
12 15 907
12 23 906
12 34 906

To confirm the practical possibility of using the
developed method of automated penetration testing,
studies of the convergence of the model were carried
out. This fact is clearly illustrated in Fig. 12. In fig. 12.
shows a graph of the dependence of the reward for each
iteration of the test performed on the number of
iterations. In the experiment, 1000 iterations were
considered. However, as you can see from the graph, it
took 350 iterations to converge the model. The
maximum reward in this example reaches 908.

1000
900 e -
800
700

600

500

400

Max. Reward

300
200
100

B 2N O BB D APAP AN D el
Iteration number x10

Fig. 12. Graph of the dependence of the reward for each
iteration of the test performed on the number of iterations

Conclusions

A method for automatic penetration testing has
been developed. A distinctive feature of the method
is the integrated use of the Shodan search engine, the
MulVal network security analysis platform, and software
vulnerability data - CVE to obtain input data and build
realistic attack scenarios and validation within the
framework of deep reinforcement learning technology.
This allowed generating an attack tree for various training
procedures and optimizing the corresponding scripts for
automated software security testing. In the study,
according to the deep reinforcement learning method, the
reward scores assigned to each node, according to the
CVSS rating, were used. This made it possible to reduce
the attack trees and identify the attack with a higher
probability of occurrence. To assess the applicability of
the method, an experiment was carried out and an attack
tree was generated, and a testing and training scenario
was also formed. The fact is confirmed that even with a
small number of training scenarios, the simulation results
reach 0.9 when determining the most rational attack path.

The developed method is an effective solution for
software security analysis, since it allows the tester to
choose a sound policy of ethical hacking and actions
aimed at mitigating the negative factors of possible
cyberattacks.
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MeTOll ABTOMATH30BAaHOI'0 TECTYBAaHHS HA MIPOHUKHCHHS
3 BUKOPUCTAHHAM TEXHOJIOTii IJTHO0KOr0 MAINMHHOTO HABYAHHS

C. I'. Cemenos, Llao Beiinin, Yxan Jliuss, C. C. Bynsba

AHoTanis. Y craTTi po3po0iieHO METO/I aBTOMAaTH30BAaHOTO TECTYBaHHS Ha MPOHUKHEHHS 3 BUKOPHUCTAHHAM TEXHOJOT1]
rIMOOKOTO MAaIIMHHOTO HaBuaHHA. OCHOBHA METa PO3POOKH - MiABHIICHHS OE3MEKH KOMI'IOTEPHHUX cUCTEeM. [ ITOCATHEHHS
MIOCTaBJICHOT MEeTH OYJIO IPOBEACHO aHAJi3 iICHYIOUHX METOJIB TECTyBaHHS Ha IPOHUKHEHHS 1 BUABICHI X OCHOBHI Henomiku. B
OCHOBHOMY BOHHU TIOB'sI3aHI 3 CyO'€KTHBHICTIO OI[IHOK B Pa3i pyYHOTO TECTyBaHHS. Y pa3i aBTOMATH30BaHOTO TECTYBAaHHS
OiMBLIICTS ABTOPIB MiATBEPMKYIOTH TOH (akT, IO HE iCHYE €JUHOTO e(QEKTHBHOTO BHPIIICHHS /Il BHKOPHCTOBYBaHHMX
mporenyp. Lle mpoTupivusi BUPIIIYEThCS 38 JOMOMOTOI0 IHTEICKTYadbHUX METOIIB aHamidy. [IpomoHyeThes, 10 po3poOIeHU
MeTo]] OyB 3aCHOBaHMIT Ha TEXHOJIOTIT MNIMOOKOT0 HaBYAHHS 3 MiIKpiMUIeHHIM. [[Jis TOCATHEHHST OCHOBHOT MeTH OyJI0 MPOBEICHO
JIOCIIJKEHHS 3A1aTHOCTI crctemu Shadov 30upatu dhakTuuHi AaHi 11s TOOYIOBH JAEPEB aTak, a Takox ruatgopmu Mulval mmst
reHeparii nepes arak. Po3pobneHo mMetox hopMyBaHHS MaTpHIli KiOepBTOPTHEHB 3a OMOMOTO0 iHCTpyMeHTy Mulval. Meton
Deep Q - Lerning Network OyB moinmeHuii [uist aHajIi3y MaTpuii KiOepBTOPTHEHB 1 MOMIYKY ONTHMAIBHOI TPAEKTOPIi aTaku. Y
JOCIHI/PKEHH], BiMOBIIHO J0 METOAY TIIMOOKOTO HAaBYAHHS 3 MiIKPIMJICHHSAM, BHKOPUCTOBYBANHCS Oaiy BHHArOpOAHW, AaHi
KO>)KHOMY BY3J1y BiamoBimHO no pedtuary CVSS. Lle no3Bonmino 3MEHIIMTH JiepeBa aTak i ieHTH(IKYyBaTH aTaky 3 OLTBIIO0
HimMoBipHicTIO0. [IpoBezieHO MOpPIBHSUIBHE IOCIHIKEHHS aBTOMAaTH30BAaHOTO METOJy TECTYBaHHS Ha IPOHHKHEHHs. BussieHo
MIPAaKTHYHA MOXKJIMBICTh BUKOPHCTAHHS pO3pPOOIICHOr0 METOY IS IiIBHIIEHHS Oe3IeKH KOMI'FOTEpPHOT CUCTEMH.

Knaio4oBi cioBa: MammHHe HaBUaHHS; IPOTpaMHe 3a0e31edeHHsT Oe3MeKH; aBTOMATH30BaHE TECTYBAHHS Ha TIPOHUKHEHHSI.

Metoa ABTOMATU3UPOBAHHOI'0 TECTUPOBAHNUS HA NPOHUKHOBECHUSA
C HCMTOJB30BAHUEM TEXHOJIOIHHA rﬂy60KOF0 MAalIuHHOI'O oﬁyqemm

C.T. Cemenos, Llao Beitnun, Yxan JIunsy, C. C. Byns0a

AHHoTamusa. B crathe pazpaboTan MeTO] aBTOMATH3UPOBAHHOTO TECTUPOBAHUS Ha IIPOHUKHOBEHHE C UCTIOJIb30BAHUEM
TEXHOJIOTHH TJIyOOKOT0 MaIlMHHOrO oOydeHusi. OCHOBHasi 1eNnb pa3pabOTKH — IOBBIILICHHE O€30MacHOCTH KOMIBIOTEPHBIX
cucreM. Jlis MOCTHIKEHHS TIOCTABICHHOW MMM ObLI TPOBENEH aHalu3 CYIIECTBYIOIMX METOJO0B TECTHPOBAHHS Ha
MMPOHUKHOBEHHE ¥ BBIIBICHBI WX OCHOBHBIE HEMIOCTATKH. B OCHOBHOM OHH CBSI3aHBI C CyOBEKTHBHOCTBHIO OLIEHOK B Cllydae
PYYHOTO TECTHPOBaHUs. B ciiydae aBTOMATH3MPOBAHHOTO TECTHPOBAHUSI OOJIBIIMHCTBO aBTOPOB MOATBEPIKIAIOT TOT (akKT, ITO
HE CYIIECTBYET eIUHOTO 3(P(HEKTHBHOTO pelIeHHS IS UCIOIb3YEMBIX MPOIEeAyp. DTO MPOTHBOPEUHE Pa3peIIaeTCsi ¢ MOMOIIBIO
MHTEJUICKTyalbHBIX METONOB aHaim3a. [Ipemnaraercsi, 4to pa3paboTaHHbBIM MeTo] ObUT OCHOBAH Ha TEXHOJOTUH TIIyOOKOTrO
o0y4deHus ¢ mojakperieHneM. st ToCTHKEeHHsT OCHOBHOM 1e7M ObLIO MPOBEICHO HCCIIeI0BaHie CIIOCOOHOCTH crucTeMbl Shadov
cobupath (hakTHUeCKHEe JaHHBIC [UIA TOCTPOCHHS ICPEBhEB aTak, a Takxke miatdopmbl Mulval 11 reHepalu AepeBbEB aTak.
Pa3paboran MeTos (GOPMHPOBAHUSI MATPHIIBl KHOSPBTOPIKEHHI ¢ MOMOIIBbI0 HHCTpyMeHTa Mulval. Metoq Deep Q - Lerning
Network ObUT yiTydIeH st aHAIN3a MATPHUIIGI KHOEPBTOPKEHHI U TIOUCKA ONITUMAIbHON TPaeKTOPHHU aTaku. B uccienoBanuu, B
COOTBETCTBUH C METOJOM TIIyOOKOro OOy4eHHs C MOAKPEIUICHHEM, HCIIOIb30BAIKCH OAalbl BO3HATPAXKICHUS, NPUCBOCHHBIE
KaXIIOMY y3JIy B COOTBETCTBUH ¢ pedTHHroM CVSS. DTO MO3BONMIO YMEHBIIUTH ACPEBbS aTaK U HICHTU(PHIUPOBATH aTaKy C
GouibIliell  BEPOSITHOCTHIO. [IPOBEEHO CPaBHHUTENBHOE WHCCIEAOBAHHE AaBTOMATH3MPOBAHHOTO METOMa TECTHPOBAHUS Ha
NPOHUKHOBEHHE. BBIABICHA MPaKTHYECKash BO3MOXKHOCTH HCIIOJB30BaHUS pa3padOTAHHOTO METOJa JUIS TOBBIIICHHS
6€30MaCHOCTH KOMITBIOTEPHOMN CHCTEMBI.

KnwoueBsle caoBa: MalmmHHOE O6y‘IeHI/Ie; IporpaMMHOC obecrieuenue 6e3OHaCHOCTI/I; ABTOMAaTU3UPOBAHHOC
TECTUPOBAHUC HA IPOHUKHOBCHHUE.
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