
ISSN 2522-9052 Сучасні інформаційні системи. 2021. Т. 5, № 3

119

UDC 004.9 doi: https://doi.org/10.20998/2522-9052.2021.3.16

Serhii Semenov1, Cao Weilin 2, Zhang Liqiang 2, Serhii Bulba1

1 National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
2 Neijiang Normal University, Neijiang, China

AUTOMATED PENETRATION TESTING METHOD

USING DEEP MACHINE LEARNING TECHNOLOGY

Abstract . The article developed a method for automated penetration testing using deep machine learning technology. The

main purpose of the development is to improve the security of computer systems. To achieve this goal, the analysis of existing

penetration testing methods was carried out and their main disadvantages were identified. They are mainly related to the

subjectivity of assessments in the case of manual testing. In cases of automated testing, most authors confirm the fact that there

is no unified effective solution for the procedures used. This contradiction is resolved using intelligent methods of analysis. It

is proposed that the developed method be based on deep reinforcement learning technology. To achieve the main goal, a study

was carried out of the Shadov system's ability to collect factual data for designing attack trees, as well as the Mulval platform

for generating attack trees. A method for forming a matrix of cyber intrusions using the Mulval tool has been developed. The

Deep Q - Lerning Network method has been improved for analyzing the cyber intrusion matrix and finding the optimal attack

trajectory. In the study, according to the deep reinforcement learning method, the reward scores assigned to each node,

according to the CVSS rating, were used. This made it possible to shrink the attack trees and identify an attack with a greater

likelihood of occurring. A comparative study of the automated penetration testing method was carried out. The practical

possibility of using the developed method to improve the security of a computer system has been revealed.

Keyw ords : machine learning; software security; automated penetration testing.

Introduction

Using computer systems in almost all in all areas

in social life and the increase in the number of

information security incidents have updated the problem

of data and software protection. One of the ways to

improve cybersecurity is through the use of penetration

testing methods and tools. This applies both to the areas

of real production and practical services, and to the area

of software development.

Until recently, penetration testing was done

manually. At the same time, first of all, based on their

own experience and erudition, the testers needed to

analyze the computer system to detect vulnerabilities.

Only then can you enter the system and compromise the

software. This is a rather laborious task, on the one

hand, it requires a large amount of tester knowledge,

and on the other hand, it has many risks of a subjective

nature. Therefore, more and more organizations have

recently been using penetration attack planner options

based on automated targeting system models. So, for

example, the company Core Security using this idea

since 2010 in its tool Core IMPACT uses the attack

planner MetricFF [1]. In addition, Core Security began

the practice of implementing certain ethical cyberattacks

in accordance with the known exploits of software

vulnerabilities [2]. However, no uniform solution has

been obtained for penetration testing procedures.

One of the ways to solve this contradiction is to

use attack tree methods. These methods are based on the

provisions of the theory of graphs by Bruce Schneier

[3], which introduced the informal concept of attack

trees to systematize and categorize various attack

scenarios on computer systems.

By analyzing the attack tree, penetration testers

can visualize and understand the interaction between

attack patterns. For example, the paper [4] proposes a

graph-based approach for modeling and detecting

attacks. At the same time, transitions from state to state

along the extended attack tree are characterized by the

attributes of the TTL lifetime and the degree of PC

confidence. The first attribute reflects the temporal

dependencies between the stages of the attack and helps

to reduce the number of false positives of the cyber

intrusion detection system. The second one

characterizes the probability of achieving the goal with

the achieved sub-goals. It should be noted that such a

prototype of ethical cyber intrusions illustrates attack

scenarios, but does not reduce the number of false

positives. In [5] A formal definition of information

attack trees is given [6] using disjunctive Petri nets. In

this model, places correspond to attacks, and transitions

often express logical dependencies, thereby simulating

the actions of intruders, which extends this model

compared to Schneier's attack trees.

The studies carried out have shown that

simultaneously with the study of models and methods

for synthesizing attack trees, it is advisable to analyze

them. This is a prerequisite for optimizing and reducing

their visual complexity. The result of the analysis is

determined by the purpose of the attack graph. For

penetration testing examples, such analysis should find

the most likely attack scenarios for the attacker.

Among the many methods for analyzing attack

graphs, the following can be distinguished. The authors

of paper [7] define the shortest paths to goals using

Dijkstra's algorithm. The set of least cost paths is also

computed by the Naor-Brutlag algorithm. It is shown

the problem of determining numerous effective

protection measures (by cost) is NP-hard. The following

interactive technique is proposed: the administrator

changes the network model in the configuration file in

accordance with the adopted security measures, and

then recalculates the shortest paths to see if these

changes have increased the security level of the network

or not. However, the authors of the article created a

© Semenov S., Cao Weilin, Zhang Liqiang, Bulba S., 2021

Advanced Information Systems. 2021. Vol. 5, No. 3 ISSN 2522-9052

120

realistic-sized attack graph based on 10 or 20 patterns,

and did not resolve all the problems associated with

matching patterns with the attacker's configuration and

profile. In addition, the presence of attack patterns and a

configuration file can also be another vulnerability. If

they fall into the wrong hands, they can be valuable

tools for an attacker.

And in paper [8] the author conducts an analysis

aimed at finding the minimum critical set of attacks - a

set of attacks of the lowest power, the removal of which

from the violator's arsenal will make it impossible for

him to reach the goal. It is shown that the problem of

finding such a set is NP-complete, and a “greedy”

heuristic algorithm for solving it of complexity O (mn)

is proposed, where m is the number of states and edges,

n is the number of attacks. At the same time, as the

authors themselves note, the presented development

does not cover the entire variety of methods for

analyzing and optimizing graphs, which presents an

opportunity for researchers to further improve.

In [9], to solve the problem of analyzing an attack

tree, the authors used the machine learning method. At

the same time, Q was taken as a basis - training for

finding the trajectory of attacks. However, the

insignificance of the action space and the sample space

reduced the practical value of this development.

According to several authors [10], deep reinforcement

learning is a useful advancement in attack tree analysis

for penetration testing. For example, in paper [11], the

task of analyzing and optimizing the attack graph using

this intelligent technology is performed. At the same

time, the width of the spectrum of possible

vulnerabilities, as well as the shortcomings of

penetration testing automation methods to ensure the

security of computer systems

The aim of the work is an automated penetration

testing method using deep machine learning technology.

For this, it is necessary to solve a number of particular

scientific problems:

1) Explore the factual data collection capabilities

of the Shadov system for the design of attack trees, as

well as the Mulval platform for generating attack trees.

2) Develop a method for forming a matrix of

cyber intrusions using the Mulval tool.

3) Improve the Deep Q - Lerning Network

method for analyzing cyber intrusion matrices and

finding the optimal attack trajectory.

4) Conduct a comparative study of the automated

penetration testing method.

The general structure of the method can be

represented as a set of methods and tools in Fig. 1. As

shown in Figure 1, the structure of the method implies

the presence of three components: a set of technologies

and means of forming an attack matrix; deep

reinforcement learning for processing attack matrix

data; tools, platforms and penetration testing tools.

Комплекс технологий и средств формирования матрицы атак

Shodan

MulVal Матрица

кибервторжений
Информация

о сетевой

топологии

DFS

Метод глубокого обучения с подкреплением

Агент

Среда

ДействиеНаградаСостояние

Инструменты, платформы и средства

тестирования на проникновение

Metasploit Framework

RSA Key Finger

Cobalt Strike

Отправка

команд

Получение

результата

a set of technologies and tools for forming an attack matrix

network
topology

information

matrix of
cyber

intrusions

platform tools and penetration
testing tools

sending
commands

getting
result

deep reinforcement learning

condition reward

agent

environment

action

Fig. 1. General structure of the automated penetration testing method

1. Investigation of the capabilities

of the Shadov and Mulval platform

It is known that the Shodan system is designed to

work with shadow Internet channels. The system is not

looking for web resources with content, but physical

devices connected to the Internet. These can be printers,

webcams, routers, GPS navigators, and even commercial

maintenance systems. The basic principle of Shodan is to

send requests to all publicly available IP addresses and log

their responses. Algorithm for scanning this system:

1) generating a random IP address;

2) selection of a random port number from the list

of ports available in Shodan;

3) checking the selected IP-address (port) and

getting a banner;

4) repeating step 1.

Thus, the system scans the entire address space at

random to ensure even coverage of the Internet and

prevent data from shifting at any time. Shodan also

supports searching for information about software

vulnerabilities [12].

The system also allows you to select several

criteria for searching and filtering data to monitor the

current state of the IS. The main Shodan filters are: City

/ country (filtering devices located within the specified

city / country, for example city: minsk); Port (output

devices with a given open port, for example port: 443);

ISSN 2522-9052 Сучасні інформаційні системи. 2021. Т. 5, № 3

121

OS (filtering devices that run on a given operating

system, for example os: linux); Geo (exact indication of

the coordinates of the device location (longitude,

latitude), for example geo: 42.9693,74.1224); Net

(search for devices from a given range of IP addresses,

for example net: 216.0.0.0/16) [12].

Mulval is a widely used network security analysis

tool that uses a vulnerability scanner to find network

vulnerabilities and then generates attack graphs for

security analysis [6]. The block diagram of the

framework is shown in Fig. 2.

Fig. 2. Block diagram of Mulval framework

2. Development of a method

for forming a matrix using the Mulval tool

2.1. A method of forming an attack tree. Having

received an informal concept in 1999 in the work of

Bruce Schneiter, attack trees, as a methodology for

describing security threats, are now widespread. The

attack tree is characterized as follows: the root of the

tree corresponds to the intruder's goal, and the vertices

correspond to the intruder's actions to achieve the goal.

Actions are combined using logical AND and OR.

Vertices and edges can be assigned different numbers,

all values that characterize the probability of success,

complexity, cost of the offender's actions. In Fig. 3

shows a graph and a textual representation of each of

the possible types of nodes, AND and OR.

graf text

G0

G1 G2 G3

goal

AND

G0

G1

G2

G3

graf text

G0

G1 G2 G3

goal

OR

G0

G1

G2

G3

 Fig. 3. Graph and text representation of each

of the possible node types, AND and OR

Considering the above facts, it should be noted that

the first stage - modeling of the attack tree, is very

important for the formation of training data. This data,

in turn, is extremely important for use in deep learning

algorithms. For the formation of input data in the work,

it is proposed to perform the following relevant stages.

1) Gathering network information to simulate a

network environment using Shodan.

2) Generation of an attack tree corresponding to

this network environment using the Mulval platform.

3) Data preprocessing

(formation of a matrix of

attacks) to adapt to the

requirements of deep

learning algorithms.

The first step is to

generate the necessary

practical query in the Shodan

system, such as a query for

information on real Web

servers. An example of data

collected through Shodan

(excluding IP addresses) is shown in Fig. 4. Based on

the data obtained, a profile file is created with the

necessary information about the network node. An

example of a web server profile is shown in Table 1.

Table 1 – Example of a web server profile

Product Port Protocol Vulnerability OS

Apache 80 https CVE-2010-1452 CentOS

Nginx 8080 https CVE-2011-0419 Ubuntu

mt-daapd

DAAP
3689 tcp CVE-2017-9617 FreeBSD

In addition to the dataset presented in Table 1, a

vulnerability file is also generated. The data includes:

- identifier number of vulnerabilities CVE,

Microsoft, etc.

- component of the basic scoring type

- exploitablityScore fitness score component

Table 2 provides an example of a vulnerability

dataset. At the second step of generating the attack tree,

it is proposed to use the well-known Mulval platform.

The Mulval model is based on logic programming and

is described using the DataLog language, which is a

dialect and a subset of the Prolog language.

This language is implemented by the IDE XSB.

When generating on the basis of Mulval, the following

types of objects-vertices of the attack graph are

distinguished - inference vertices (inference rule) and

fact vertices (rules are predicates that determine the

values and type of action prototype). The semantic

meaning of the scenario stage lies in the logical

following "Conjunct → Fact", which allows you to

determine when the selected predicate has the value

"true". A conjunct is a logical conclusion.

An example of generating an attack tree using the

Mulval tool is shown in Fig. 5.

2.2. Algorithm for transforming an attack tree

into a cyber intrusion matrix. The next component of

the automated penetration testing method being

developed is an algorithm for transforming an attack

tree into a cyber intrusion matrix. For the research, the

algorithm for transforming the attack tree into the

corresponding matrix, developed by the authors [10],

was chosen as a prototype. The study of the method

carried out on the basis of [10] made it possible to make

a choice about the limitations of its use for penetration

testing. This is largely due to authors's neglect of inputs

such as "file access", "command execution", and

focusing only on vulnerabilities.

Fig. 4. Sample data

collected via Shodan

"info": "(CentOS)",
"ip_str": 192.168.1.1,
"isp": HiNet,
"os": null,
"port": 443,
"product": "Apache httpd",
"transport": "tcp",
"version": "2.2.15",
"vulns": {
"CVE-2010-1452",

}

Advanced Information Systems. 2021. Vol. 5, No. 3 ISSN 2522-9052

122

Fig. 5. An example of an attack graph scenario

developed using the Mulval tool

Below is a description of the improved algorithm

for transforming attack trees into a cyber intrusion

matrix. At the first step of the algorithm, all nodes in the

attack tree are matched into a matrix form.

At the second step, the complex compares

quantitative scoring of security vulnerabilities to the

baseline scoring of the corresponding nodes. The

baseline score is calculated in accordance with the

CVSS (Common Vulnerability Scoring System)

structure. According to [13], the scores are calculated

using special formulas based on metrics and

characterize the ease of deployment of an exploit and its

impact on a computer system. As an improvement, it is

proposed to superimpose on the base CVSS score some

predefined exploitability score, (for example, "file

access") in accordance with the expression:

5

expsc
ovsc bsc , (1)

where ovsc – overall security vulnerability scoring,

bsc – baseline security vulnerability scoring, expsc –

serviceability scoring.

At this step, instead of embedding the cyber

intrusion matrix directly into the deep machine learning

algorithm, it is proposed to simplify this matrix using a

modified DFS algorithm - Tarjan's algorithm [14]. This

algorithm is primarily one of the options for depth-first

search. In this case, the vertices are visited from roots to

leaves, and the end of their processing is performed on

the way back.

This simplification of the complete matrix allows

you to select only those nodes that can be used to

achieve the target of the attack.

At the end of the execution of the Taryan

algorithm, the third step is to form a simplified cyber

intrusion matrix, in which the following are written:

- score values for the start node in the first column;

- the values of the total scores characterizing the

intermediate stages in the intermediate columns;

- the score values for the end node in the last

column.

This data will be used as input to evaluate the

reward in the deep machine learning algorithm.

2.3. Deep Reinforcement Learning to Determine
the Optimal Attack Trajectory. In the developed
method of automatic penetration testing, the method of
deep reinforcement learning is used to determine the
optimal attack trajectory through continuous learning.

The input data for the method is formed on the
basis of a simplified cyber intrusion matrix, and the soft
max function, a logistic function for the
multidimensional case, will serve as the prototype of the
activation function:

Kz zi k

i k=1
z = e e , (2)

where К – is the number of classes.

During training, a deep reinforcement learning

(DQL) model agent acts as an ethical hacker, while the

targeted system is represented as a simplified cyber

intrusion matrix. The agent moves from node to node in

the developed matrix until it reaches the desired result -

the "victim's server". The bonus factors used in the DQL

modeling process correspond to the values of the

vulnerability assessment based on the data of the

Common Vulnerability Scoring System (CVSS) (1). In

CVSS, a baseline assessment interprets the severity of the

negative impacts of particular types of vulnerabilities,

while an exploitability assessment captures the potential

for exploitation of that particular vulnerability. To obtain

the most appropriate result from a practical point of view,

it is advisable to carry out mathematical weighting of

these estimates by multiplying by the appropriate

coefficients. The values of the coefficients are determined

empirically, taking into account the opinion of experts in

the field of cybersecurity.

2.4. Experimental studies of automated

penetration testing method. To assess the performance

and effectiveness of the developed method of automated

software penetration testing, a series of experiments was

carried out. In this case, the targeted system was

presented in the form of a topological structure of a

computer network in Fig. 6.

From the presented diagram, it can be seen that the

targeted system is a collection of three different

services, including a web server and mail server on one

subnet, as well as a file server on another subnet. The

client on the first subnet is controlled by Windows

2000, and the client on the second subnet is controlled

by Internet Explorer. In the presented diagram, a

workstation with Acrobat software is also connected to

the same subnet with the file server.

As a means of protecting a computer network from

cyber intrusions, a firewall is used in the scheme.

The rules for connecting to this tool are as follows.

1. The agent is located in the external network and

has the ability to access the web server through the

HTTP protocol and the corresponding HTTP port.

2. There is a dual connection between the web

server and workstations on the network.

3. Web server and file server are connected via

NFS protocol.

ISSN 2522-9052 Сучасні інформаційні системи. 2021. Т. 5, № 3

123

Perimeter Firewall

Webserver. Net Framework

mailServer

fileServer
Windows_2003_server

Workstation Acrobat

Router

subnet_1
Windows_2003_server

subnet_2
Internet Explorer

Internet

Fig. 6. Topological structure of the investigated computer network

4. The output of the file server of the first and

second subnets to the external network is carried out

using the HTTP protocol.

5. The file server and workstation are connected

via the NFS protocol.

The studies show that this topology is

characterized by several software vulnerabilities. For

example, according to experts, one of the most

dangerous web server vulnerabilities (CVE-2020-1198)

is a buffer overflow vulnerability in the mod_uwsgi

module. An attacker can cause a denial of service and

execute arbitrary code.

Clients on the first subnet could be vulnerable to

attack by an attacker due to the CVE -2016-0189

vulnerability in the known Vbscript.dll component. This

vulnerability allows a hacker to expose arbitrary code.

Clients of the second subnet are susceptible to remote

code discovery attacks in the scripting engine supplied

with the Internet Explorer browser (vulnerability CVE-

2020-1380). The file server contains the CVE-2010-

0492 vulnerability, which is associated with Windows

2003 SP 2. In this case, an attacker has the ability of

implementation an attack bypassing the limitations of

the original IPV4 address. Table 1 shows the indicated

vulnerabilities of the system under study.

Table 1 – Vulnerabilities of the studied system

Hardware List of vulnerabilities

Web server CVE-2020-1198

First subnet CVE -2016-0189

Second subnet CVE-2020-1380

File-server CVE- 2010-0492

Using the Mulval system, we will generate a graph

of attacks on the studied computer system. Fig. 7 shows

the generated attack graph. As shown Fig. 7 using

Mulval, a graph scheme with three different types of

vertices is formed. The vertices shown as rectangles

characterize the configuration of the system. The

diamond vertices represent potential privileges or access

that an attacker could gain on the system. Elliptical

nodes associate preconditions with postconditions.

The next step in the research was the procedure for

simplifying the attack graph. Fig. 8 shows a refined

attack graph using algorithms developed by the authors

of the research [11].

The graph shown in Fig. 8 can be based on

modeling using the method of deep reinforcement

learning. In this figure, the location of the agent,

vulnerabilities and targets of the attacker agent are

represented as vertices, and each edge of the graph

illustrates the capabilities of the agent and its actions. It

is assumed that an attacker can move between nodes in

any direction of the graph until he reaches one of the

target states. It should be noted that in the developed

automated penetration testing method, the general

vulnerability rating system (CVSS) is also used to

determine rewards in accordance with expression 1.

If a malicious agent exploits a vulnerability, then the

overall score associated with that vulnerability will be

considered a reward value. If the agent ultimately

achieves the goal, then the reward will be considered the

maximum. Additional looped edges are added to the

vertices of the target with a reward of 100, since the agent

who reaches the malicious target remains there forever.

The rewarded DQL model is shown in Fig. 9. As an

example, let us simulate a situation when a malicious

agent is located at one of the points of a computer

network. In Fig. 5. this point is denoted by node 12. This

agent has the ability to move to other nodes (13, 21, 25

and 43), while each of his actions receives a bonus in

accordance with the metrics of vulnerabilities.

Let the agent perform malicious actions starting

from node 43. In this case, there are two options:

- go to node 34, which is the ultimate target of the

cyberattack. In this case, the agent receives 100 points;

- return to the starting position and do not receive

additional points.

Advanced Information Systems. 2021. Vol. 5, No. 3 ISSN 2522-9052

124

19
,"

ha
cl

(s
ub

ne
t_

1,
in

te
rn

et
,h

tt
pP

ro
t

oc
ol

,h
tt

pP
or

t)
",

"L
E

A
F

",
1

9,
"n

et
A

cc
es

s(
w

eb
S

er
ve

r,
tc

p,
80

)"
,"

O
R

",
0

10
,"

R
U

L
E

 6
 (

di
re

ct
 n

et
w

or
k

ac
ce

ss
)"

,"
A

N
D

",
0

27
,"

ha
cl

(s
ub

ne
t_

2,
in

te
rn

et
,h

tt
pP

ro
t

oc
ol

,h
tt

pP
or

t)
",

"L
E

A
F

",
1

42
,"

in
C

om
pe

te
nt

(v
ic

tim
_3

)"
,"

L
E

A

F
",

1

11
,"

ha
cl

(i
nt

er
ne

t,w
eb

S
er

ve
r,

tc
p,

80

)"
,"

L
E

A
F

",
1

28
,"

in
C

om
pe

te
nt

(v
ic

tim
_2

)"
,"

L
E

A

F
",

1

20
,"

in
C

om
pe

te
nt

(v
ic

ti
m

_1
)"

,"
L

E
A

F
",

1

12
,"

at
ta

ck
er

L
oc

at
ed

(i
nt

er
ne

t)
",

"L
E

A
F

",
1

41
,"

ha
cl

(f
il

eS
er

ve
r,

in
te

rn
et

,h
tt

pP
ro

to
co

l,h
tt

pP
or

t)
",

"L
E

A
F

",
1

18
,"

R
U

L
E

 2
2

(B
ro

w
si

ng
 a

 m
al

ic
io

us

w
eb

si
te

)"
,"

A
N

D
",

0

26
,"

R
U

L
E

 2
2

(B
ro

w
si

ng
 a

 m
al

ic
io

us

w
eb

si
te

)"
,"

A
N

D
",

0

40
,"

R
U

L
E

 2
2

(B
ro

w
si

ng
 a

 m
al

ic
io

us

w
eb

si
te

)"
,"

A
N

D
",

0

17
,"

ac
ce

ss
M

al
ic

io
us

In
pu

t(
su

bn
et

_1
,

vi
ct

im
_1

,w
in

do
w

s_
20

00
)"

,"
O

R
",

0

30
,"

ac
ce

ss
M

al
ic

io
us

In
pu

t(
su

bn
et

_2
,

vi
ct

im
_2

,ie
)"

,"
O

R
",

0

39
,"

ac
ce

ss
M

al
ic

io
us

In
pu

t(
fi

le
S

er
ve

r,
vi

ct
im

_3
,w

in
do

w
s_

20
03

_s
er

ve
r)

",

"O
R

",
0

14
,"

ne
tw

or
kS

er
vi

ce
In

fo
(w

eb
S

er
ve

r

,h
tt

pd
,tc

p,
80

,a
pa

ch
e)

",
"L

E
A

F
",

1

13
,"

vu
lE

xi
st

s(
w

eb
S

er
ve

r,
'C

A
N

-

20
20

-

11
98

',h
tt

pd
,r

em
ot

eE
xp

lo
it

,p
ri

vE
sc

a

la
ti

on
)"

,"
L

E
A

F
",

1

22
,"

ha
sA

cc
ou

nt
(v

ic
ti

m
_1

,s
ub

ne
t_

1

,u
se

r)
",

"L
E

A
F

",
1

21
,"

vu
lE

xi
st

s(
su

bn
et

_1
,'C

V
E

-

20
16

-

01
89

',w
in

do
w

s_
20

00
,r

em
ot

eC
li

en
t

,p
ri

vE
sc

al
at

io
n)

",
"L

E
A

F
",

1

29
,"

ha
sA

cc
ou

nt
(v

ic
ti

m
_2

,s
ub

ne
t_

2

,u
se

r)
",

"L
E

A
F

",
1

25
,"

vu
lE

xi
st

s(
su

bn
et

_2
,'C

V
E

-

20
20

-

13
80

',i
e,

re
m

ot
eC

li
en

t,p
ri

vE
sc

al
at

io

n)
",

"L
E

A
F

",
1

44
,"

ha
sA

cc
ou

nt
(v

ic
ti

m
_3

,f
il

eS
er

ve

r,
us

er
)"

,"
L

E
A

F
",

1

43
,"

vu
lE

xi
st

s(
fi

le
S

er
ve

r,
'C

V
E

-

20
10

-

04
92

',w
in

do
w

s_
20

03
_s

er
ve

r,
re

m
ot

eC
li

en
t,p

ri
vE

sc
al

at
io

n)
",

"L
E

A
F

",
1

8,
"R

U
L

E
 2

 (
re

m
ot

e
ex

pl
oi

t o
f

a
se

rv
er

pr
og

ra
m

)"
,"

A
N

D
",

0

16
,"

R
U

L
E

 3
 (

re
m

ot
e

ex
pl

oi
t f

or
 a

 c
li

en
t

pr
og

ra
m

)"
,"

A
N

D
",

0

24
,"

R
U

L
E

 3
 (

re
m

ot
e

ex
pl

oi
t f

or
 a

 c
li

en
t

pr
og

ra
m

)"
,"

A
N

D
",

0

38
,"

R
U

L
E

 3
 (

re
m

ot
e

ex
pl

oi
t f

or
 a

 c
li

en
t

pr
og

ra
m

)"
,"

A
N

D
",

0

7,
"e

xe
cC

od
e(

w
eb

S
er

ve
r,

ap
ac

he
)"

,"

O
R

",
0

15
,"

ex
ec

C
od

e(
su

bn
et

_1
,u

se
r)

",
"O

R

",
0

23
,"

ex
ec

C
od

e(
su

bn
et

_2
,u

se
r)

",
"O

R

",
0

37
,"

ex
ec

C
od

e(
fi

le
S

er
ve

r,
us

er
)"

,"
O

R
",

0

6,
"n

fs
E

xp
or

tI
nf

o(
m

ai
lS

er
ve

r,
'/

ex
po

rt
',w

ri
te

,w
eb

S
er

ve
r)

",
"L

E
A

F
",

1

5,
"h

ac
l(

w
eb

S
er

ve
r,

m
ai

lS
er

ve
r,

nf
sP

ro
to

co
l,n

fs
P

or
t)

",
"L

E
A

F
",

1
35

,"
ha

cl
(f

il
eS

er
ve

r,
w

or
kS

ta
ti

on
,n

fs

P
ro

to
co

l,n
fs

P
or

t)
",

"L
E

A
F

",
1

36
,"

nf
sE

xp
or

tI
nf

o(
w

or
kS

ta
ti

on
,'/

ex
po

rt
',w

ri
te

,f
il

eS
er

ve
r)

",
"L

E
A

F
",

1

1,
"R

U
L

E
 1

7
(N

F
S

 s
he

ll
)"

,"
A

N
D

",
0

31
,"

R
U

L
E

 1
7

(N
F

S
 s

he
ll

)"
,"

A
N

D
",

0

2,
"a

cc
es

sF
il

e(
m

ai
lS

er
ve

r,
w

ri
te

,'/

ex
po

rt
')"

,"
O

R
",

0

3,
"R

U
L

E
 4

 (
T

ro
ja

n
ho

rs
e

in
st

al
la

ti
on

)"
,"

A
N

D
",

0

4,
"e

xe
cC

od
e(

m
ai

lS
er

ve
r,

ro
ot

)"
,"

O
R

",
0

34
,"

ex
ec

C
od

e(
w

or
kS

ta
ti

on
,r

oo
t)

",
"

O
R

",
0

33
,"

R
U

L
E

 4
 (

T
ro

ja
n

ho
rs

e

in
st

al
la

ti
on

)"
,"

A
N

D
",

0

32
,"

ac
ce

ss
F

il
e(

w
or

kS
ta

ti
on

,w
ri

te
,'/

ex
po

rt
')"

,"
O

R
",

0

F
ig

.
7

.
A

tt
ac

k
 g

ra
p
h

ISSN 2522-9052 Сучасні інформаційні системи. 2021. Т. 5, № 3

125

12

4

13

25

23

43
34

21

15

Имитатор узла злоумышленника: 12

Узлы имитирующие уязвимость: 13, 21, 25, 43

Цель: 4, 15, 23, 34

Attacker Node Simulator
Simulating vulnerability nodes

target

Fig. 8. Refined attack graph

12

4

13

25

23

43
34

21

15

7
0

100

0

100

100

100

100

100

0

100

0

100

0

6
0

90

80

Fig. 9. Rewarded DQL Model

Let's form a generalized matrix of states in the form

of a table 2. Table 2 rows represents the state of the system

columns - actions. For example, matrix point 12, 43

illustrates the transition of an agent from node 12 to node

43, while receiving bonuses in the amount of 6 points. The

algorithm for assessing the attacker's behavior is presented

in the form of a flowchart in Fig. 10. It should be noted that

the state matrix transition graph is used in this algorithm.

For the purpose of practical implementation in accordance

with the algorithm in Fig. 10 from the state matrix table 2 a

submatrix of state clarifications and additional bonuses to

the attacking agent is formed, which can be illustrated in

the form of table 3.

Table 2 – Generalized matrix of states

 12 13 21 25 43 4 15 23 34

12 -1 7 8 9 6 -1 -1 -1 -1

13 0 -1 -1 -1 -1 100 -1 -1 -1

21 0 -1 -1 -1 -1 -1 100 -1 -1

25 0 -1 -1 -1 -1 -1 -1 100 -1

43 0 -1 -1 -1 -1 -1 -1 -1 100

4 -1 0 -1 -1 -1 100 -1 -1 -1

15 -1 -1 0 -1 -1 -1 100 -1 -1

23 -1 -1 -1 0 -1 -1 -1 100 -1

34 -1 -1 -1 -1 0 -1 -1 -1 100

START

State/Reward (Environment) Matrix (R) is a

n×n and n is the number vertices in transition

graph, Discounted factor ()

States/Actions: State: S t ϵ S Action: A t ϵ A

all goals in the

transition graph

r = remove rows and columns

of all goals except the current

goal from matrix R

Initialize Q as 0s (arbitrarily

for all state-action pairs in r)

8: \\ Q Calculation

each Exploration

Select a random initial state

(S t ϵ S)

current state != goal

state

Select one action from all

possible actions for the current

State

Attacker s optimal

action selection

policy to

compromise

security of the

network (Matrix Q)

END

Take the action and observe

the outcome state

and reward

Fig. 10. Flowchart of an algorithm

for assessing the behavior of an attacker

Table 3 – Submatrix of state clarifications and additional

bonuses to the attacking agent

 12 13 21 25 43 4

12 -1 7 8 9 6 -1

13 0 -1 -1 -1 -1 100

21 0 -1 -1 -1 -1 -1

25 0 -1 -1 -1 -1 -1

43 0 -1 -1 -1 -1 -1

4 -1 0 -1 -1 -1 100

Using this matrix, we will form a diagram of the

bonuses of the attacker agent for one of the stated goals. In

fig. 11 illustrates a graph of bonuses to an agent when

moving to target state 1. As shown in Fig. 11, the transition

from state 12 to state 13 gives the maximum reward 408.

The transition from state 13 to the state that characterizes

the ultimate goal of the attacker is formalized by the

maximum bonus 500. The transition 12, 13, 4 is preferable

in terms of earned bonuses.

Advanced Information Systems. 2021. Vol. 5, No. 3 ISSN 2522-9052

126

12

4

13

25

43

21

408
326

500

400

500

267
408

270326

268326

Fig. 11. The graph of bonuses to an agent

upon transition to target state 1

A number of other practical examples of the

results of using the developed automated penetration

testing method for ethically compromising targets in a

computer system are presented in Table 4. The

presented table demonstrates the tester's capabilities in

taking into account the maximum damage. This allows

you to rank vulnerabilities in the system and eliminate

them depending on their priority. Thereby it increases

the efficiency of the testing process.

Table 4 – Practical examples of the results of using

the automated penetration testing method

Attacker Node Simulator Target Maximum reward

12 4 908

12 15 907

12 23 906

12 34 906

To confirm the practical possibility of using the

developed method of automated penetration testing,

studies of the convergence of the model were carried

out. This fact is clearly illustrated in Fig. 12. In fig. 12.

shows a graph of the dependence of the reward for each

iteration of the test performed on the number of

iterations. In the experiment, 1000 iterations were

considered. However, as you can see from the graph, it

took 350 iterations to converge the model. The

maximum reward in this example reaches 908.

Fig. 12. Graph of the dependence of the reward for each

iteration of the test performed on the number of iterations

Conclusions

A method for automatic penetration testing has

been developed. A distinctive feature of the method

is the integrated use of the Shodan search engine, the

MulVal network security analysis platform, and software

vulnerability data - CVE to obtain input data and build

realistic attack scenarios and validation within the

framework of deep reinforcement learning technology.

This allowed generating an attack tree for various training

procedures and optimizing the corresponding scripts for

automated software security testing. In the study,

according to the deep reinforcement learning method, the

reward scores assigned to each node, according to the

CVSS rating, were used. This made it possible to reduce

the attack trees and identify the attack with a higher

probability of occurrence. To assess the applicability of

the method, an experiment was carried out and an attack

tree was generated, and a testing and training scenario

was also formed. The fact is confirmed that even with a

small number of training scenarios, the simulation results

reach 0.9 when determining the most rational attack path.

The developed method is an effective solution for

software security analysis, since it allows the tester to

choose a sound policy of ethical hacking and actions

aimed at mitigating the negative factors of possible

cyberattacks.

REFERENCES

1. Hoffmann, J. (2011), “The Metric-FF Planning System: Translating ”Ignoring Delete Lists” to Numeric State Variables”,

Journal of Artificial Intelligence Research, vol. 20, pp. 291–341.

2. Obes, J. L., Sarraute, C. and Richarte, G. G. (1999), “Attack planning in the real world”, Cryptography and Security, 2013.

3. Schneier, B. (1999), “Attack trees - modeling security threats” , Dr.Dobb’s Journal, vol. 24.

4. Camtepe, S. and Yener, B. (1999), A Formal Method for Attack Modeling and Detection, URL: http://cs.rpi.edu/research/pdf.

5. McDermott, J.P. (2001), “Attack Net Penetration Testing”, New Security Paradigms, ACM Press, New York, pp. 15–21.

6. Ou, X., Govindavajhala, S. and Appel, A.W. (2005), “MulVAL: A logic-based network security analyzer”, 14th

USENIX Security Symposium, Baltimore, MD, USA, URL: http://www.cis.ksu.Edu/~xou/publications/mulval_sec05.pdf.

7. Phillips, C. and Swiler, L. A (1998), “Graph-Based System for Network-Vulnerability Analysis”, Proceedings of the New

Security Paradigms Workshop, Charlottesville, VA.

8. Sheyner, O. (2004), Scenario Graphs and Attack Graphs, Ph.D. diss., Carnegie Mellon University, Pittsburgh, PA, USA.

9. Yousefi, M., Mtetwa, N., Zhang, Y. and Tianfield, H. (2018), “A reinforcement learning approach for attack graph analysis”,

12th IEEE Int. Conf. On Big Data Science And Engineering (TrustCom/BigDataSE), pp. 212–217.

10. Zhenguo & Beuran, Hu, Razvan & Tan, Yasuo (2020), Automated Penetration Testing Using Deep Reinforcement Learning,

pp. 2-10, DOI: http://dx.doi.org/10.1109/EuroSPW51379.2020.00010.

11. Yousefi, Mehdi & Mtetwa, Nhamoinesu & Zhang, Yan & Tianfield, Hua (2017), “A novel approach for analysis of attack

graph”, IEEE, DOI: http://dx.doi.org/10.1109/ISI.2017.8004866.

12. Sh. R. Davlatov, P. V. Kuchynski (2020) Extending the basic functionality of MALTEGO based on the canari framework

and SHODAN search engine / Journal of the Belarusian state university. Physics. 2020;1:34 – 40

http://cs.rpi.edu/research/pdf/06-01.pdf

ISSN 2522-9052 Сучасні інформаційні системи. 2021. Т. 5, № 3

127

13. Madelyn, Bacon (2020), CVSS (Common Vulnerability Scoring System), URL:

https://searchsecurity.techtarget.com/definition/CVSS-Common-Vulnerability-Scoring-System.

14. Riansanti, O., Ihsan, M. and Suhaimi, D. (2017), “Connectivity algorithm with depth first search (DFS) on simple graphs”,

Journal of Physics: Conf. Series, Vol. 948, ICE-STEM, Jakarta, Indonesia.

Received (Надійшла) 15.06.2021

Accepted for publication (Прийнята до друку) 18.08.2021

ВІДОМОСТІ ПРО АВТОРІВ/ ABOUT THE AUTHORS

Семенов Сергій Геннадійович – доктор технічних наук, професор, завідувач кафедри "Обчислювальна техніка та

програмування", Національний технічний університет "Харківський політехнічний інститут", Харків, Україна;
Serhii Semenov – Doctor of Technical Sciences, Professor, Head of Computer Engineering and Programming Department,

National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: s_semenov@ukr.net; ORCID ID: http://orcid.org/0000-0003-4472-9234.

Цао Вейлін – викладач інформаційного центру ІТ, Типовий університет Нейцзяна, Нейцзян, Китай;

Cao Weilin – teacher, Department of IT information Centre, Neijiang Normal University, Neijiang, China.

e-mail: caowl@njtc.edu.cn; ORCID ID: https://orcid.org/0000-0001-8230-5235.

Ліцзян Джан – викладач коледжу комп’ютерних наук, Типовий університет Нейцзяна, Нейцзян, Китай;

Zhang Liqiang – teacher, College of Computer Science, Neijiang Normal University, Neijiang, China.

e-mail: zhangiq@njtc.edu.cn; ORCID ID: https://orcid.org/0000- 0003-1278-2209.

Бульба Сергій Сергійович – кандидат технічних наук, доцент кафедри "Обчислювальна техніка та програмування",

Національний технічний університет "Харківський політехнічний інститут", Харків, Україна;

Serhii Bulba – Candidate of Technical Sciences, Associate Professor of Computer Engineering and Programming

Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;

e-mail: bssserega@gmail.com; ORCID ID: https://orcid.org/0000-0003-0358-7516.

Метод автоматизованого тестування на проникнення

з використанням технології глибокого машинного навчання

С. Г. Семенов, Цао Вейлін, Чжан Ліцян, С. С. Бульба

Анотація . У статті розроблено метод автоматизованого тестування на проникнення з використанням технології

глибокого машинного навчання. Основна мета розробки - підвищення безпеки комп'ютерних систем. Для досягнення

поставленої мети було проведено аналіз існуючих методів тестування на проникнення і виявлені їх основні недоліки. В

основному вони пов'язані з суб'єктивністю оцінок в разі ручного тестування. У разі автоматизованого тестування

більшість авторів підтверджують той факт, що не існує єдиного ефективного вирішення для використовуваних

процедур. Це протиріччя вирішується за допомогою інтелектуальних методів аналізу. Пропонується, що розроблений

метод був заснований на технології глибокого навчання з підкріпленням. Для досягнення основної мети було проведено

дослідження здатності системи Shadov збирати фактичні дані для побудови дерев атак, а також платформи Mulval для

генерації дерев атак. Розроблено метод формування матриці кібервторгнень за допомогою інструменту Mulval. Метод

Deep Q - Lerning Network був поліпшений для аналізу матриці кібервторгнень і пошуку оптимальної траєкторії атаки. У

дослідженні, відповідно до методу глибокого навчання з підкріпленням, використовувалися бали винагороди, дані

кожному вузлу відповідно до рейтингу CVSS. Це дозволило зменшити дерева атак і ідентифікувати атаку з більшою

ймовірністю. Проведено порівняльне дослідження автоматизованого методу тестування на проникнення. Виявлено

практична можливість використання розробленого методу для підвищення безпеки комп'ютерної системи.

Ключові слов а: машинне навчання; програмне забезпечення безпеки; автоматизоване тестування на проникнення.

Метод автоматизированного тестирования на проникновения

с использованием технологии глубокого машинного обучения

С. Г. Семенов, Цао Вейлин, Чжан Лицян, С. С. Бульба

Аннотация. В статье разработан метод автоматизированного тестирования на проникновение с использованием

технологии глубокого машинного обучения. Основная цель разработки – повышение безопасности компьютерных

систем. Для достижения поставленной цели был проведен анализ существующих методов тестирования на

проникновение и выявлены их основные недостатки. В основном они связаны с субъективностью оценок в случае

ручного тестирования. В случае автоматизированного тестирования большинство авторов подтверждают тот факт, что

не существует единого эффективного решения для используемых процедур. Это противоречие разрешается с помощью

интеллектуальных методов анализа. Предлагается, что разработанный метод был основан на технологии глубокого

обучения с подкреплением. Для достижения основной цели было проведено исследование способности системы Shadov

собирать фактические данные для построения деревьев атак, а также платформы Mulval для генерации деревьев атак.

Разработан метод формирования матрицы кибервторжений с помощью инструмента Mulval. Метод Deep Q - Lerning

Network был улучшен для анализа матрицы кибервторжений и поиска оптимальной траектории атаки. В исследовании, в

соответствии с методом глубокого обучения с подкреплением, использовались баллы вознаграждения, присвоенные

каждому узлу в соответствии с рейтингом CVSS. Это позволило уменьшить деревья атак и идентифицировать атаку с

большей вероятностью. Проведено сравнительное исследование автоматизированного метода тестирования на

проникновение. Выявлена практическая возможность использования разработанного метода для повышения

безопасности компьютерной системы.

Ключев ые слов а: машинное обучение; программное обеспечение безопасности; автоматизированное

тестирование на проникновение.

https://www.techtarget.com/contributor/Madelyn-Bacon
https://iopscience.iop.org/journal/1742-6596
https://iopscience.iop.org/volume/1742-6596/948
https://iopscience.iop.org/issue/1742-6596/948/1
http://orcid.org/0000-0002-6446-5523
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-1278-2209
https://web.kpi.kharkov.ua/otp/team_member/miroshnichenko-nataliya-mikolayivna/
https://orcid.org/0000-0003-0358-7516

