Advanced Information Systems. 2021. Vol. 5, No. 2

ISSN 2522-9052

UDC 004.49

doi: https://doi.org/10.20998/2522-9052.2021.2.20

Zhang Ligiang!, Cao Weiling?, Jan Rab¢an?, Viacheslav Davydov?, Nataliia Miroshnichenko?

! Neijiang Normal University, Neijiang, China
2 University of Zilina, Zilina, Slovakia

% National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine

ANALYSIS AND COMPARATIVE STUDIES
OF SOFTWARE PENETRATION TESTING METHODS

Abstract.

Information security is one of the most important components in any organization. The disclosure of this

information can lead not only to material losses, but also to the loss of the reputation and image of the company, which
ultimately, in some cases, can lead to its complete collapse. Therefore, in order to avoid these consequences, it is necessary
to analyze the security and reliability of information processing systems. One of the most effective ways to do this is
through the use of "penetration testing” methods. The results obtained. The section provides software vulnerabilities
analysis. The most frequently used types of attacks and intrusions by cyber intruders are highlighted. In contrast to this,
methods comparative analysis for identifying software vulnerabilities was carried out. It is concluded that it is advisable to
improve the methods for identifying vulnerabilities through the recommendations complex use taking into account the
existing security risks of software tools, the features of modern methodologies and software development tools, as well as
the modern software penetration testing methods capabilities.

Keywords: information security; testing methods; vulnerable software; security testing.

Introduction

Currently, information security is one of the most
important components in any organization, since the
information processed in their information systems, to a
greater or lesser extent, belongs to the categories of
commercial secrets and personal data. The disclosure of this
information can lead not only to material losses, but also to
the loss of the reputation and image of the company, which
ultimately, in some cases, can lead to its complete collapse.
Therefore, in order to avoid these consequences, it is
necessary to analyze the security and reliability of
information processing systems. One of the most effective
ways to do this is through the use of "penetration testing"
methods. The term "penetration testing” means imitation of
the actions of a real attacker to implement unauthorized
entry into the information system [3, 7].

1. Software Vulnerabilities Analysis

Currently, modern digital computing and
communication tools cannot be imagined without
appropriate software. Moreover, the level of its quality
is largely determined by the presence (or absence) of
critical errors (bugs). This objectively existing factor
cannot be ignored when assessing software
vulnerabilities. Vulnerability can be the result of errors

Vulnerabilities By Year

II I153 |

2008 3
2009 39
2010 150

M 2011 266

M 2012 249
2013174
2014127
2015 157

M 2016 172

M 2017 153
2018 161
2019177

made at various stages of software development (design,
coding, etc.), of outdated cryptographic systems and
authentication systems use, disregard for the rules and
algorithms of secure programming, etc. Analysis of
different levels standards and recommendations for
information security showed that the term vulnerability
is used to denote a flaw in the system, using which you
can violate its integrity or cause incorrect operation.

Studies carried out have shown that some
vulnerabilities are known only theoretically, while
others are actively used and have known exploits. Free
software security study by Edgescan, Coverity, OWASP
fund, which analyzed the security of more than 1000
projects containing more than 150 million lines of code,
showed that they contain more than 60 thousand
vulnerabilities [1]. And the most common types of
vulnerabilities can be identified (Table 1)

As you can see in Table 1, Microsoft software
products and various Web browsers have been the most
vulnerable types of software for a number of years.
Edgescan Vulnerability Stats Report 2020 shows
vulnerabilities exist in all popular Web browsers.

The report gives a security analysis for such
popular Web browsers as Mozilla Firefox, Opera and
Chrome. For example, the statistics of Chrome
vulnerabilities is shown in Fig. 1.

Vulnerabilities By Type

M Denial of Service 901

M Execute Code 121

W xss 70
Overflow 371
Mermory Corruption 91
Bypass Something 189
Gain Information 116
CSRF 3
Gain Privilege 6
Directory Traversal 7

901

371

189
121 o1

.m
.

Fig. 1. Chrome Web Browser vulnerability statistics

136

© Zhang Ligiang, Cao Weiling, Rab¢an J., Davydov V., Miroshnichenko N., 2021

ISSN 2522-9052

CyuacHi inpopmariiiai cuctemu. 2021. T. 5, Ne 2

Table 1 — The most common types of vulnerabilities

Vulnerability tvpe The percentage of identified vulnerabilities Degree of
yup 2018 [2019 [2020 criticality
Vulnerabilities in software of private firms and non-governmental organizations
BLUEKEEP CVE-2019-0708 15% 18% 17% High
UNSUPPORTED SQL SERVER 14% 17% 17% Middle
SQL INJECTION (WEB APPLICATION ATTACK) 17% 12% 11% Middle
MS Office Memory Corruption Vulnerability CVE-2017-11882 - 8% 10% Middle
RDP, MS12-020/, CVE-2012-0002 6% 7% 7% High
SMB, MS17-010/, CVE-2017-0143 TO, CVE-2017-0148 6% 6% 6% High
OTHER 42% 32% 32%
Vulnerabilities in software of state institutions

SQL INJECTION 41% 42% 42% Middle
CROSS-SITE SCRIPTING (XSS) 20% 19% 20% Middle
PHP MULTIPLE VULNERABILITIES 14% 16% 17% High
REMOTE CODE EXECUTION 5% 7% 8% High
SENSITIVE FILE DISCLOSURE 3% 5% 5% High
OTHER 17% 11% 8%

The studies carried out have shown that the most vulnerabilities, specific testing methods and

common vulnerabilities are the following: recommendations are used. The goals, methods,
Overriding a null pointer allows to execute a code algorithms and means of verification, rules for

outside the vulnerable software.

Resource leak. If after the program terminates or
memory releases, the released resources are not cleared,
then these memory areas may still contain the values of
variables and other confidential information.

Dead code. The presence of unused sections of a
code in the program allows an attacker to inject software
bookmarks into these sections of the code and then use
them to get unauthorized access to protected resources.

Using values before validation. If the software
processes information coming from external sources
without verification, then it is possible to generate such
a variable value that will allow you to get full control
over the vulnerable software.

Access to uninitialized variables. This
vulnerability is similar in nature to the "Dead Code"
vulnerability, when unused parts of software are used by
an attacker to get a full control over a program.

Using an object after release allows to access the
restricted information. Buffer overflow is a vulnerability
that occurs when a computer program writes down data
outside a buffer allocated in memory. Buffer overflow
usually occurs due to improper handling of data
received from outside and memory, without tight
protection from the programming subsystem (compiler
or interpreter) and the operating system. It should be
noted that the mentioned above statistics and the list of
vulnerabilities are not the exhaustive data.
Unfortunately, the level of motivational components of
cyber intruders very often exceeds the capabilities of
individual IT companies which resist cyber-attacks.
However, a number of methods for identifying software
vulnerabilities have been developed and are currently
being used. Let's conduct out their comparative analysis.

2. Comparative analysis of methods
for identifying vulnerabilities

The studies carried out have shown that currently,
to improve the efficiency of identifying software

conducting and verification are indicated in them. The
following ones are relevant for Ukraine: [1-8]:

— OSSTMM (Open Source Security Testing
Methodology Manual);

— OWASP (Open Web Application Security
Project) Testing Guide;

— PTES (Penetration
Standard);

— NIST Special Publication 800-115: Technical
Guide to Information Security Testing and Assessment
(NIST SP 800-115);

— BSI - Study A Penetration Testing Model;

— ISSAF Information System Security
Assessment Framework;

— THE NATIONAL BANK OF UKRAINE
BOARD RESOLUTION of 28.09.2017 Ne 95 «On
Approval the Provision about Organization of Measures
on Ensure Information Security in the Banking System
of Ukrainey.

Each of these documents has its own
characteristics (advantages and disadvantages). The
research is carried out in several stages (Fig. 2), which
allow to structure knowledge and comprehensively
assess the security of software. In general, the results of
comparing methodologies by phases of vulnerability
tests can be illustrated with Fig. 3.

Testing Execution

PLANNING PHASE

FOOTPRINTING

DISCOVERY

PHASE SCANNING & ENUMERATION

'VULNERABILITY ANALYSIS

ATTACK
PHASE

REPORTING PHASE

Fig. 2. Software security testing stages

137

ISSN 2522-9052

Advanced Information Systems. 2021. Vol. 5, No. 2

s159] AlljIqelaulnA o saseyd Ag saibojopoyiaw Jo uomealyisse|d ¢ ‘biq

*ASojopoy3aw 3y} YHM JUD]SISUOD e SU0I199104d SY3 1BY1 3UNSUD 0] 51591 paiinbay

30B1E [NJSSI0NS B IO} UOIIBWIOJUI PR129dXD JO 1S

ININLSSO

poday

n jeuonippe Suljjeisul ‘v
uooadsul WalsAS ¢
uolje|easd a8d|IAld T
ssad0e Sululen ‘T

yeny

sisAjeue Ayljiqesauinp 'z
uoljew.oul
pa109]|02 aY3 Suines ‘Bunsal 1e1s T

yoJeasay

| 1}

Suiuue|d

dSVMO

uoljeald poday

UOoI1NJ9X3 1S9

uonesedald

_‘ uoljeasd yoday

sa|n [euonippe Suljjeisul 'y
uoladsul wasAs ¢
uole|eass a89|IAld

UOI1NJ3X3 1S9

sishjeue Ajljiqesaulnp g
(wuoyie|d 3591) JUBWIUOIIAUR 159 duedald ‘T

uonesedaid

aulen|n Jo
walsAs Supjueq ayl ul A11IN23S UOIBWIOHU| INSUS 0] S9UNSeaW Jo [enoldde ayl uo suone|nsay

syoeyiue dn Suluesd g
yoday T

uoday

sa2eJ1 3uUIplH ‘9
ssadoe poddns 'g
asiwoidwo) '
uolje|edsa a39|IALd ‘€
$s920e Sululen g
uoljes3duad ‘1

uoneald yoday

Adeny

uoI1NJ9Xa 1S9

S31}|1qeJau|NA JO uoled
Suiddew 3JomiaN '
UOI1BWIOUI JO UOIID3|[0D 'T

4vSssI

usp| g uonenjea3

uonesedald

1odau ‘sisAjeue |euly

1

uoleald yoday

/

salSojopoyran

1dwane uoiseaul aAIY

uoI1NJdaxXa 1S9

yoday

Sa11|1AN [eUOLIPPE Bul||elsu] 'y
uoadsul walsAs ¢
uolje[edasa a8d|IAld 'T

ssadoe Suluien ‘T

ddeny

sisAjeue Ayljigesauinp ‘¢
uolyewJoyul
Pa123]|102 3Y1 Sulnes ‘Sulsel 14e1S T

ydoJieasay

Suluue|d

STT-008 uonesljgnd e12ads 1SIN

uoijeald poday

UOI1NJ29X3 1S9

uonesedald

SHSII pUB UOIIBWIOJUI JO SISAjeuy "€

ERIVE-ITEN 4
uofjesedaid ‘T

exgololrol|

[N:]

poday

uoleaud yoday

uoljeyio|dxa 1s0d ‘€
uoneyo|dx3 'z
sisAjeue Ajljiqessuinp T

UOIINDIXD 159

Suijspow 1eaiyl ‘¢
uonewJojul SunaL||o) ¢
uoloesaul Adeuiwijaid T

uonesedald

S3ld

138

ISSN 2522-9052

CyuacHi inpopmariiiai cuctemu. 2021. T. 5, Ne 2

Table 2 contains a comparison of the methods
being studied, where the objects of research are divided
into 3 standard phases:

— Preparation,

— Execution of tests

— Generation of a report.

Table 3 contains a comparison of methods
according to the specified criteria using a similar system
of point grades from 0 to 10.

The presented results of the methodologies
assessment showed the imperfection of any of them. For
example, the best methodology in the test execution and
reporting phases — OWASP does not meet the
requirements of the experts in the preparation phase.
Vice versa, the OSSTMM methodology, which was
highly appreciated by experts at the first stage of
preparing the pre-test material, has a low rating at the
later stages of software security research.

Table 2 — Comparison of the investigated methodologies according to three standard phases

Resolution of the
Methodology, Phases OWASP|OSSTMM|NIST SP| BSI [ISSAF|PTES NBU Board Ne 95
Preparation
Customer approval of testing modes 0 7 1 0 5 7 7
Execution and signing of the contract 0 7 0 8
Tests execution
Collecting information about the object 8 1 4 8 8 7 0
Identification of vulnerabilities 8 1 3 8 8 8 1
Analysis of information and risks 8 1 2 8 8 8 2
Active invasion attempts 8 1 5 8 8 8 0
Enabling the following intrusion 8 0 0 0 8 8 0
Report creation
Artifact cleaning 5 1 2 4 5 8 0
Report creation 5 7 4 8 7 9 2
Analy5|s_ gr!d rec_orr_lme_ndatlons for found 10 2 4 8 4 9 1
\vulnerabilities elimination
Description of risks 10 1 3 8 4 9 2
Table 3 — Comparison of methodologies by criteria
Resolution of the

Methodology, Phases OWASP|OSSTMM|NIST SP| BSI |ISSAF|PTES NBU Board No 95
Description of the information a cracker can obtain 5 8 1 0 2 0 2
Description of the penetration testing goals 10 4 5 10 1 5 3
Detailed description of the methodology 10 4 9 7 6 10 0

Based on this, it can be concluded that it is
advisable to improve the methods for identifying
vulnerabilities through the complex use of
recommendations taking into account the existing
security risks of software tools, the features of modern
methodologies and software development tools and the
capabilities of modern software penetration testing
methods.

Conclusions

The section analyzes the software vulnerabilities.
The priority of software security requirements and the
obligation to follow these requirements at all stages of
the software life cycle are shown. Research and

comparative analysis of methods for identifying
vulnerabilities have been carried out; lack of attention
from developers to security issues has been indicated.

The expediency of improving the existing methods
of software penetration testing by synthesizing a new
software testing method taking into account increased
security requirements is indicated.

Acknowledgment

The Slovak Research and Development Agency
(Agenttira na Podporu Vyskumu a Vyvoja) supported
this work under the contract no. APVV-18-0027 titled
“New methods development for reliability analysis of
complex system”.

REFERENCES

1. (2020), Edgescan’s 2020 Vulnerability Stats Report Released, available at: https://www.edgescan.com/edgescans-2020-

vulnerability-stats-report-released/

2. Kostadinov, Dimitar (2016), Introduction: Intelligence Gathering & Its Relationship to the Penetration Testing Process
available at: https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering/

3. Nickerson, C. (2012), The Penetration Testing Execution Standard, available at: http://www.pentest-standard.org/index.php/

PTES_ Technical Guidelines

4. Scarfonem K., Souppayam M., Codym A. and Orebaugh, A. (2012), NIST Special Publications 800-115 Technical Guide to
Information Security Testing and Assessment, USA, Gaithersburg, 80 p., available at: http://csrc.nist.gov/publications/

nistpubs/800-41-Rev1/sp800-41-revl.pdf

5. (2012), Study A Penetration Tesing Model, Germany, Bonn, 111 p., available at: https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Publications/Studies/Penetration/penetration _pdf.pdf? _blob=publicationFile

139

https://www.edgescan.com/edgescans-2020-vulnerability-stats-report-released/
https://www.edgescan.com/edgescans-2020-vulnerability-stats-report-released/
https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering/
http://www.pentest-standard.org/index.php/%20PTES_Technical_Guidelines
http://www.pentest-standard.org/index.php/%20PTES_Technical_Guidelines
http://csrc.nist.gov/publications/%20nistpubs/800-41-Rev1/sp800-41-rev1.pdf
http://csrc.nist.gov/publications/%20nistpubs/800-41-Rev1/sp800-41-rev1.pdf
https://www.bsi.bund.de/SharedDocs/%20Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/%20Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile

Advanced Information Systems. 2021. Vol. 5, No. 2 ISSN 2522-9052

6. (2018), The Open Source Security Testing Methodology Manual, available at: http://www.isecom.org/mirror/OSSTMM.3.pdf.
7. Vacca, John R. (2017), Computer and Information Security Handbook Elsevier, 1280 p.
8. (2018), XPathinjection, available at: URL :https://portswigger.net/kb/issues/00100600_xpath-injection.

Hagniiinia (received) 21.01.2021
TpwuitusTa o apyky (accepted for publication) 07.04.2021

BIIOMOCTI [TPO ABTOPIB / ABOUT THE AUTHORS

Jliuzsan [{xan — BUKIagay KoJeIKy KOMIT IOTepHUX HaykK, TunoBuii yHiBepcuteT Heituzsna, Heituzsn, Kitaid;
Zhang Ligiang — teacher, College of Computer Science, Neijiang Normal University, Neijiang, China.
e-mail: zhangig@njtc.edu.cn; ORCID ID: https://orcid.org/0000- 0003-1278-2209.

Ilao Beiinin — Buknanay indopmanitinoro nenrpy IT, Tunosuii yHiBepcurer Helinzsina, Hefizsn, Kitai;
Cao Weilin — teacher, Department of IT information Centre, Neijiang Normal University, Neijiang, China.
e-mail: caowl@njtc.edu.cn; ORCID ID: https://orcid.org/0000-0001-8230-5235.

Pa6uan SIn — PhD, dakynereT ynpapiniHChKUX HayK Ta iHQopMaTHku, KumiHCbKHit yHisepeuter, XKunina, Crosauduta;
Jan Rabéan — PhD, Faculty of Management Science and Informatics, University of Zilina, Zilina, Slovakia;
e-mail: Jan Rabcan@fri.uniza.sk; ORCID ID: https://orcid.org/0000- 0003-2835-9114.

JaBunoB Bsiuecnap BagmMoBMY — KaHAMOAT TEXHIYHUX HayK, IOIEHT, AOUEHT kadenpu "OOUuciroBaibHa TEXHIKa Ta
nporpamyBanHs", HanioHanbHUH TeXHIYHUN yHiIBepcuTeT "XapKiBChKUH MoiTexHIYHMH iHCTUTYT", XapkiB, YKpaiHa;
Viacheslav Davydov — Candidate of Technical Sciences, Associate Professor , Associate Professor of Computer Engineering
and Programming Department, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;
e-mail: vyacheslav.v.davydov@gmail.com; ORCID ID: https://orcid.org/0000-0002-2976-8422.

Mipomnivenko Haranis MukonaiBHa — KaHIUIAT TEXHIYHMX HaykK, IoueHT kadenpu "OOuUMCITIOBaNIbHA TEXHIKA Ta
nporpamyBanHs", HanionansHUH TexHIYHUN yHiBepcuTeT "XapKiBChKUH MOJiTeXHIYHMiT iHCTHTYT", XapKiB, YKpaiHa;
Nataliia Miroshnichenko — Candidate of Technical Sciences, Associate Professor of Computer Engineering and
Programming Department, National Technical University "Kharkiv Polytechnic Institute”, Kharkiv, Ukraine;
e-mail; natnikdr@gmail.com; ORCID ID: https://orcid.org/0000 0003-4329-7126.

AHaJi3 i nopiBHsJIbHE J0C/Ii/I2KeHHsI MeTO/AiB TeCTYBAaHHS MPOrPaMHOro 3ade3nevyeHHs Ha MPOHUKHEHHS
Wxan Jlinsn, [ao Beiinin, 5. Paduan, B. B. JlaBunos, H. M. MiponiHidyeHko

AHoTaunis. [Hpopmariitna Oes3meka € OJHMM 3 HAMBAXIIMBIIIMX KOMIIOHEHTIB B OyAb-sKii opraHi3amii, OCKITBKH
iHpopMaris, mo oOpoOnseThes B iX iHQOpPMAIMHUX cUCTeMax, B OUIBIIIH YW MEHIIIH Mipi BIIHOCHTBCS IO KaTeropiit
KOMEPIIHHOI TAaEMHMIII 1 IEPCOHANBPHUX JaHUX. PO3KpUTTS i€l iHpopMariii Moke IPU3BECTH HE TIJIBKH IO MaTepiajbHUX BTPAT,
a ¥ 0 BTpaTH pemyTauii Ta iMi/UKy KOMIaHil, 0 B KiHIIEBOMY IIJICYMKY B AESKHX BHIaJKax MOXKE MPUBECTH JO ii TTOBHOIO
kpaxy. ToMmy, 100 YHMKHYTH LMX HAcIiJIKiB, HEOOXiJHO NpoaHaii3yBaTn Oe3leKy i HaIiifHICTh cucTeM 00poOku iHdopmarlii.
OnuH 3 HaWOIIBII e()EKTUBHUX CIOCOOIB 3pOOUTH 1€ - BUKOPHCTOBYBATH METOJIM «TECTYBAaHHS Ha HMPOHHKHEHHs». OTpuMaHi
pe3yiabTaTd. Y pPO3AUTI MPOBENEHO aHalli3 BPa3dMBOCTEH mporpaMHOro 3abesrneueHHs. BumineHo HalOLIBII YacTo
BHKOPUCTOBYBaHI KiOep3JIOyMHUIIEHHIKaMi BUAM aTak i BTOPTHeHb. Ha mpoTuBary oMy MpOBEICHO MOPIBHSAJIBHUI aHaIi3
METOAWK BUsBICHHsS BpaszmmBocTeil [13. 3po0ieHO BHCHOBOK TMPO OUUIBHICTD BIOCKOHAJICHHS METOJVK BHSBICHHS
BPA3JIMBOCTEH IUIIXOM KOMIUICKCHOTO BUKOPHUCTaHHS PEKOMEH/aliil 3 ypaxyBaHHSAM ICHYIOUMX PU3HKIB OE3MEKH MPOrpaMHHX
3ac00iB, 0COONMBOCTEN Cy4acHUX METOIOJOTIH 1 3ac00iB po3pobku 10, a TakoK MOKIIMBOCTEH Cy4acHHUX METOAUK TECTYBaHHS
10 Ha npoHWKHEHHs. 3 METOI0 apryMEHTOBAHOIO BHOOpPY TEXHOJIOTii MareMaTH4HOI (opMaizalil NMpolecy TecTyBaHHS
MPOBEICHI aHaIi3 1 MOPIBHUIBHE JOCIIIKSHHS HAMOIBII TEPCIIEKTUBHUX 3 HUX.

Kaw4dosi caoBa: inbopmamiiina Oe3rieka; METOIM TECTYBaHHS; Bpa3JIMBE MPOrpaMHe 3a0e3IIeUeHHs; TeCTyBaHHS Oe3IeKu.

AHATHN3 ¥ CPaBHUTEJILHOE HCCIeJ0BAHNE METOA0B TeCTHPOBAHUS
NMPOrpaMMHOr0 o0ecneveHust HA MPOHUKHOBEHHE

Wkan Jlungn, Lao Beiinun, 5. Pabuan, B. B. laBeinos, H. H. MupomHmyenko

AHHoTanus. MHbopManmoHHas 6e30MaCHOCTD SIBIAETCS OJHUM M3 BaKHEHIINX KOMIIOHEHTOB B JIIO00H OpraHHM3aIvy,
MIOCKOJIBKY MH(OpMarus, oopadaTeiBaeMast B MX WH()OPMAIIMOHHBIX CHCTEMax, B OOJBIIeH MM MEHBIIEH CTeIIeHH OTHOCUTCS K
KaTEeropysiM KOMMEPUYECKOH TalfHBI M IepCOHANBHBIX JaHHBIX. PackpbIThe 3ToH MH(OpPMAIMM MOXET MPUBECTH HE TONBKO K
MaT€pUAJIbHBIM IIOTEPSAM, HO U K IOTEPE penyTallui U UMHJKa KOMIIaHHWH, YTO B KOHEYHOM HUTOI'€ B HEKOTOPBIX CIIydassX MOXKET
NPHUBECTH K ee MOoJHOMY Kpaxy. [ToaToMy, 4ToOBI H30€KaTh ITUX MOCIEACTBUI, HEOOXOIMMO MPOAHATIM3UPOBATh 0E30MaCHOCTh
U HaJeKHOCTh cHcTeM 00paboTku mHpopManuu. OauH u3 Hanbosee 3()(GEKTUBHBIX CHOCOOOB CleNnaTh 3TO - HCIOJIb30BATh
METObl «TECTUPOBaHMsI Ha NPOHHKHOBeHHE». IlosydeHHBIe pe3yabTaThl. B paszene mnpoBeieH aHamM3 YsA3BUMOCTEH
IporpaMMHOTO obecrniedeHus. Beinenensl Hanbonee 9acTo HCTIOIb3yeMble KHOEeP3I0yMBIIICHHUKAMH BH/IBI aTaK M BTOPIKCHUH.
B mpotmBoBec 3TOMYy MpOBEAEH CPAaBHHUTENBHBIN aHAIM3 METOAMK BbUBICHUS ys3BuMmocteil [10. Cpeman BbIBOm 0O
1[eTIeCO00Pa3HOCTH yCOBEPIICHCTBOBAHHMS METOAWK BBUBICHUS YSA3BUMOCTEH ITyTeM KOMIUIEKCHOTO —HCIIOJNB30BAaHUS
PEKOMEHJAMi C YYeTOM CYNIECTBYIOIIMX PHCKOB OE€30MacHOCTH MPOTPAMMHBIX CPEACTB, OCOOCHHOCTEH COBPEMEHHBIX
METOJIOJIOTHH M cpenctB paspadotku [10, a Takxke BO3MOXKHOCTEH COBPEMEHHBIX METOAMK TecThupoBaHus [IO Ha
npoHukHOBeHHe. C [eNbio apryMEHTHPOBAaHHOTO BBIOOpA TEXHOJIOTHI MaTeMaTHUeCKOi (hopMaIn3auy mporecca TeCTUPOBaHHS
MIPOBEIEHBI aHANIU3 U CPABHUTEIBHOE HCCIIEJOBaHNE Hanbosee NepCeKTUBHBIX U3 HUX.

KnwueBsnie caoBa: I/IH(i)OpMaHI/IOHHaSI 6630HaCHOCTB; METOJbl TECTUPOBAHUS; YA3BUMOC IIPOrpaMMHOE 06ecnequI/Ie;
TECTUPOBAHUC 0€30IacHOCTH.

140

http://www.isecom.org/mirror/OSSTMM.3.pdf
https://portswigger.net/kb/issues/00100600_xpath-injection
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-1278-2209
https://orcid.org/0000-%200003-2835-9114.
mailto:vyacheslav.v.davydov@gmail.com
https://orcid.org/0000-0002-2976-8422
https://web.kpi.kharkov.ua/otp/team_member/miroshnichenko-nataliya-mikolayivna/
mailto:natnikdr@gmail.com
https://orcid.org/0000-0003-4329-7126

