Advanced Information Systems. 2021. Vol. 5, No. 1

ISSN 2522-9052

UDC 004.9

Galina Cherneva'?, Pavlo Khalimov’

" South West University, Blagoevgrad, Bulgaria

doi: 10.20998/2522-9052.2021.1.17

*“Todor Kableshkov” University of Transport, Sofia, Bulgaria
?National Technical University "Kharkov Polytechnic Institute", Kharkiv, Ukraine

MUTATION TESTING OF ACCESS CONTROL POLICIES

Abstract. One of the most important and integral components of modern computer security are access control systems.
The objective of an access control system (ACS) is often described in terms of protecting system resources against
inappropriate or unwanted user access. However, a large degree of sharing can interfere with the protection of resources, so
a sufficiently detailed AC policy should allow selective exchange of information when, in its absence, sharing can be
considered too risky in general. Erroneous configurations, faulty policies, as well as flaws in the implementation of
software can lead to global insecurity. Identifying the differences between policy specifications and their intended functions
is crucial because the correct implementation and enforcement of the policies of a particular application is based on the
premise that the specifications of this policy are correct. As a result of the policy, the specifications presented by the
models must undergo rigorous validation and legalization through systematic checks and tests to ensure that the
specifications of the policies really correspond to the wishes of the creators. Verifying that access control policies and
models are consistent is not a trivial and critical task. And one of the important aspects of such a check is a formal check
for inconsistency and incompleteness of the model, and the security requirements of the policy, because the access control
model and its implementation do not necessarily express policies that can also be hidden, embedded by mixing with direct

access restrictions or another access control model.

Keywords: access control; access control system; mutation testing; access control testing; policy.

Introduction

The main purpose of an access control system is
often described as: protecting system resources against
inappropriate or unwanted user access. From a business
point of view, the goal can also be described by the
optimal exchange of information for users and the
program. However, much of the sharing can interfere
with resource protection. Thus, detailed access control
policy should allow for the selective exchange of
information when, in its absence, sharing may be
considered excessively dangerous.

Proper implementation and usage of access control
policies are based on the premise that policies and
specifications are true without hidden or conflicting
rules that cause leakage or block access to information
objects. Access control policy specifications should be
thoroughly reviewed and legalized through continuous
testing to ensure that policy specifications do reflect
policy maker trends. Verification and testing of access
control policies are similar to general testing of
application software in many respects, but there are also
differences. to nominally and accurately capture the
security requirements that an access control system
must adhere to, in this case models should be created in
order to bridge a large gap in the abstraction between
policy and mechanism.

Thus, information for development and
implementation, as well as unambiguous and exact
expression are provided by the access control model.

1. Access Control Policies

Access Control Policies — are high-level
requirements that define how and by whom access is
managed, under what circumstances they can access
specific information. While access control policies may
be program-oriented and thus taken to attention by the
program provider, policies may relate to user actions

within an organizational unit or across organizational
boundaries. For example, policies may relate to the use
of resources within or between organizational units or
may be based on factors requiring knowledge,
competence, authority, commitment or conflict of
interest. Such policies may cover several computing
platforms and programs. It is impractical to create a list
of common access management policies, as business
objectives, risk tolerance, corporate culture and
regulatory responsibilities that affect policy vary from
enterprise to enterprise and even from one
organizational unit to another.

There are several well-known access control
policies that can be categorized: discretionary or non-
discretionary. Typically, discretionary access control
policies are associated with identifier-based access
control, and non-discretionary access control policies
are associated with rule-based controls (e.g., a
Mandatory access control).[1].

2. Discretionary access control

Discretionary access control delegates a certain
part of access control at the discretion of the owner of
the object, or any other person authorized to control
access to the object. For example, it is typically used to
restrict another user's access to a file (it is the file owner
that controls other users' access to this file). Only those
users specified by the owner can have some
combination of read, write, execute, and other file
permissions. Policy of discretionary access control,
usually very flexible and widely used in the commercial
and public sectors. However, discretionary access
control is known to be considered vulnerable for two
reasons: First, granting read access is transient. For
example, when user "A" gives user "B" read access to a
file, nothing stops user "B" from copying the contents of
user "A's" file. Copying performs to the object
controlled by user "B". User "B" can now grant any

118

© Cherneva G., Khalimov P., 2021

ISSN 2522-9052

CyuacHi iHpopmarniiiai cuctemu. 2021. T. 5, Ne 1

other user access to a copy of user file "A" behind the
back of user "A". Also, discretionary access control
policies are vulnerable to various Trojan attacks.
Because programs inherit the identity of the user who
calls them, for example user "B" can write a program
for user "A" which at first look performs some useful
functions and at the same time can destroy the contents
of files which belongs to user "A". During investigation
of a problem, the audit files will indicate that user "A"
has destroyed his own files [2]. Thus, formally, the
disadvantages of discretionary access control are as
follows:

e Information can be copied from one object to
another; so there is no real guarantee in the flow of
information in the system.

e There are no restrictions on the use of
information when the user receives it.

e Access rights to objects are determined by the
owner of the object, not through a system-wide policy
that reflects the security requirements of the
organization.

3. Testing of discretionary access control

For now, there are several basic methods of testing
for accessibility to architecture: black box testing, white
box testing, and gray box testing. Black box testing —
this testing evaluates the functionality of the model
without knowledge of its internal work. Testing by the
white box method, is opposite of the black box testing
and tests the internal functionality [3]. Gray box testing
is a test that is performed with general knowledge of the
model, usually performed by the user or the entity that
simulates the user. Black box testing methods (or
behavioral testing) may not be sufficient to protect
against some spontaneous actions that are built into the
access control model.

The methods of white box testing include the
following testing tools:

e Error guessing;

e Error seeding;

e Exhaustive testing.

Error guessing - is a testing method where tests are
developed based on the experience of previous testing
or on the knowledge and experience of the tester, which
defects are typical for certain components of the model
or for functional areas. This method can also be applied
to black box testing. Often the method is used in
conjunction with other testing tools. The main
advantage of this method is that this method reveals the
cons of the system or model that cannot be detected by
formal testing tools, but the effectiveness of the method
is directly proportional to the experience of the tester or
the experience of past testing, and does not guarantee
high coverage.

Error seeding - is the process of deliberately
entering errors into a program to test whether test cases
are able to record added errors. This technique aims to
detect errors in order to determine the relationship
between actual and artificial errors. Artificial errors are
unknown errors, and actual errors are injection errors, so
test cases are used to check for such faults. This is
basically an evaluation technique that helps to

determine the presence of real errors based on the
number of sown errors found. The main disadvantage of
this method is the need to remove errors from the model
after testing, which in turn complicates the automation
of model testing.

Exhaustive testing, also known as complete
testing, it is the complete testing of all system
components with all possible combinations of input and
output data. This method has a high code coverage ratio,
but requires significant computing resources and time.
The more complex the system, the more resources are
required. In practice, it is used to test simple
components of the model [4]. To solve the problem of
automation, resources, and high coverage, consider
mutation testing of the white box method, which
generates additional test inputs to cover policy-related
objects. The following example shows a mutation check
for safety requirements. This policy formalizes the
university's access control model for assigning and
obtaining grades. It has two subjects: faculty and
student, as well as two resources: credit scores and
exam grades, and three actions: assign, review, and
obtain. For this example, we expect the following
requirements:

S1 — There are no students who have the rights to
assign exam grades.

S2 — All faculty members have rights to assign
credit and exam grades.

S3 — There is no such combination of subjects
that the user with these subjects has the right to obtain
and assign a resource examination marks.

The first security requirement S1 is intuitive, as we
certainly don't want students to assign grades. The
second safety requirement S2 is to ensure that teachers
can actually assign grades. S3 is an example of
segregation of duties, as we do not want anyone to
assign their grades. There is an obvious conflict of
interest. The following is an example of an access
control policy model. To make the example readable
and concise, the Model is written as simple statements.
Are there requirements that do not immediately meet
these three requirements. Requirements are, in essence,
a constraint on the division of responsibilities that
controls any request from both teaching and student
subjects. All three safety requirements are met in the
model. The first step in validating a mutation is to create
mutation models using a mutation operator that simply
inverts the effect of each rule by changing the
permission to prohibit or the permission to allow. The
number of mutant models created by this operator is
equal to the number of rules in the model. The example
model has only two rules [5] (Fig. 1 — Fig. 3).

The second step of verification is to determine
what safety requirements are contained in the original
model and each model of the mutant. The mutation
model is excluded at the safety requirement if the safety
requirement is maintained for the original model, but
not for the mutant model. In other words, the safety
requirement reveals a defect inherent in the mutation
model. The greater the number of mutant models
excluded, the more the original model meets safety
requirements.

119

Advanced Information Systems. 2021. Vol. 5, No. 1

ISSN 2522-9052

. if object = faculty

. and resource = (credits or exam grades)
. and action = (view abo assign)

then

allow

. if object = student

. and resource = or exam grades

. and action = obtain

then

0. allow

2 ©ONOO A WN

Fig. 1. Requirements of access control model

. if object = faculty

. and resource = (credits or exam grades)
. and action = (view abo assign)

then

. prohibit

. if object = student

. and resource = or exam grades

. and action = obtain

then

0. allow

2 ©ONOO A WN

Fig. 2. First mutant of model

. if object = faculty

. and resource = (credits or exam grades)
. and action = (view abo assign)

then

allow

. if object = student

. and resource = or exam grades

. and action = obtain

then

0. prohibit

2 ©ONOO A WN

Fig. 3. Second mutant of model

Mutant
Model 1
Model / i
Mutator [Mutant
Model 2
N \ :
Mutation .
Operator Mutant
Model n

Safety
requirements

The first mutation model in Figure 2 does not meet
the requirement of S2, and thus the first model is
excluded. Requirement S2 seeks to provide a policy
under which all teachers can assign grades. Because the
error in the model is the rule that provides such access,
the security requirement is violated. The second model
of the mutant in Figure 3 is not excluded by any of the
three safety requirements, showing that the original
model is not comprehensive and does not fully meet the
safety requirements. Mutation testing serves a safety
requirement for two purposes: to determine whether the
model fully covers the safety requirements to facilitate
changes to the model so that it covers all safety
requirements or vice versa. In some cases, instead of
correcting the model, mutation testing serves to correct
the security requirement by correcting the policy:

S4 — All students can obtain exam grades.

4. Discussion of results

Summarizing, Fig. 4 illustrates the required inputs
and outputs of the mutation test. The input data is a
tested model and, in this case, one mutation operator.
The mutator then generates a set of mutant models, each
of which has one error. The mutation operator generates
a mutant for each rule, denying the decision of this rule.
Although black box testing is relatively quick for
mutants, large models can use thousands of mutant
models to easily generate them. An equivalent mutant is
a mutant that is syntactically different from the original
model, being semantically equivalent.

In other words, an equivalent mutant will give the
same result as the original model for all input data and
thus does not give any benefit and result in artificially
reducing the killing rate of mutants, which gives low
quality and inaccurate measurement quality. It is also
possible to determine which safety requirements are met
and which do not correspond to both the original model
and each model of the mutant [6].

Violated
Safety
requirements

Model
checker
(black box) Violated
Safety

requirements

Violated
Safety
requirements

Fig. 4. Mutant models generation

An important step in mutation testing is to
calculate the exclusion factor for mutation models.

The model exclusion factor is the ratio of the
number of excluded models to the total number of

120

ISSN 2522-9052

CyuacHi iHpopmarniiiai cuctemu. 2021. T. 5, Ne 1

mutation models. This ratio serves as a metric to
quantify the coverage of the safety requirements of the
model. The high exclusion factor indicates that the
original model covers a large number of safety
requirements. For example, the coverage of the models
(i.e. the model exclusion factor) for the security
requirements S1, S2 and S3 in the above example is
50%, because only one of the two models is excluded. If

Safety requirements

you add S4, then the exclusion factor will increase to
100%.

There are trace files, which were previously
generated by security requirements verification, are
analyzed in order to divide the security requirement into
four subsets for each mutant. The Venn diagram is
illustrated in Fig. 5, which describes the relationship of
these four sets for one mutant model.

Original True,
Mutant True

Original False,
Mutant True

Original True,
Mutant False

Mutant Killed!

Original False,
Mutant False

Fig. 5. Venn diagram illustrating the four safety requirement states

The area inside the box presents a set of all safety
requirements. The area inside the left circle is a set of
safety requirements that are true for the original model.

Thus, the area outside the smallest left circle and
inside the field is a set of security requirements that do
not correspond to the reality for the original model (i.e.
these security requirements do not meet the
requirements of the original model).

The area inside and the right circle represent a
mutant model that is considered erroneous for safety
requirements. Therefore, the area outside the right side
of the circle and inside the box is a set of safety
requirements that are true for the mutant model. An
interesting area is the intersection between the two
circles. If at least one safety requirement adheres to the
original model, but it is not met fairly for the mutant
model, then the mutant is killed. If two circles do not
intersect, the mutant is not killed [7].

A safety requirement that is true for both the
original model and the mutant model is irrelevant to the
detection of a fault in the mutant model because the
safety requirement does not apply to the part of the

model that contains the defect. The security requirement
that is considered erroneous for the original model does
not matter, as it is unclear whether this erroneous
security requirement is caused by an error in the model
or the security requirement itself.

More specifically, before performing a mutation
testing, these safety requirements must be checked
manually to determine whether they are erroneous due
to a model error, a safety requirement error, or an error
in environmental constraints.

Conclusion
Therefore, mutation testing, in contrast to
exhaustive testing, can be implemented for any

complexity with a sufficiently high code coverage ratio.

Since additional mutant models are created
based on the base model, and all tests are performed
on the mutants, this guarantees the integrity of the
base model, and also provides an opportunity to
automate testing.

Thus, the mutation testing method can be used to
test access control policies.

REFERENCES

1. Hu, V.C, Ferraiolo, D.F. and Kuhn, D.R. (2006), Assessment of Access Control Systems, NIST Interagency Report 7316,
National Institute of Standards and Technology, Gaithersburg, Maryland, DOI: https://doi.org/10.6028/NIST.IR.7316.

2. Muhammad, Aqib and Riaz Ahmed, Shaikh (2015), “Analysis and Comparison of Access Control Policies Validation
Mechanisms”, International Journal of Computer Network and Information Security (IJCNIS), Vol. 1, pp. 54-69. DOI:

https://doi.org/10.5815/ijcnis.2015.01.08.

3. Hu, V.C., Kuhn, D.R. and Xie, T. (2008), “Property Verification for Generic Access Control Models”, Proceeding of The
2008 IEEE/IFIP International Symposium on Trust, Security and Privacy for Pervasive Application (TSP2008), Shanghai,
China, December 17-20, DOI: https://doi.org/10.1109/EUC.2008.22.

121

Advanced Information Systems. 2021. Vol. 5, No. 1 ISSN 2522-9052

4. Brian, LK., Labish, Yu. and Shusha, M. (2005), “Stress Testing of Real Time Systems with Genetic Algorithms,”,
Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computing, pp. 1021-1028, Washington, DC, USA.

5. Hu, Vincent C., Kuhn, Rick and Yaga, Dylan (2017), Verification and Test Methods for Access Control Policies/Models,
NIST Special Publication 800-192, DOI: https://doi.org/10.6028/NIST.SP.800-192.

6. Martin, E. and Xie, T. (2007), “A Fault Model and Mutation Testing of Access Control Policies”, Proceedings of the 16th
International Conference on World Wide Web (WWW 2007), Security, Privacy, Reliability, and Ethics Track, Banff, Alberta,
Canada, pp. 667-676, DOLI: https://doi.org/10.1145/1242572.1242663.

7. Jia, Yu. and Harman, M. (2011), “Analysis and Investigation of the Development of Mutation Testing”, IEEE Transactions
on Software Engineering, vol. 37, issue 6, pp. 649—678.

Hapniiimna (received) 30.11.2020
[pwitnsra no apyky (accepted for publication) 10.02.2021

BI1IOMOCTI ITPO ABTOPIB / ABOUT THE AUTHORS

Yepuepa I'anina IlerkoBa — nokTOp Hayk (KOMyHiKawiiiHi Texnosorii), npodecop, TpancrnoprHuii yriBepcurer “Tomop
Ka6unemxos”, Coois, ITiBnenno-3axinnuii YHisepcurer, biaroesrpan, bonrapis;
Galina Cherneva — Doctor of Sciences, (Communication Technology), Professor, “Todor Kableshkov” University of
Transport, Sofia, South West Universityd Blagoevgrad. Bulgaria;
e-mail: cherneva@vtu.bg, gcherneva@swu.bg; ORCID ID: http://orcid.org/0000-0001-7441-0270.

XaJjimos IlaBio BikTopoBuu — acripanT xadeapu oO4MCIIOBAIBbHOI TEXHIKM Ta IporpamyBaHHs, HarioHanbHUMN TeXHIYHHI
yHiBepcuter “XapKiBCbKHI NMONITEXHIUYHMH 1HCTUTYT”, XapKiB, YKpaiHa,
Pavlo Khalimov — Postgraduate student Professor of Computer Science and Programming Department, National Technical
University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine;
e-mail: pavlo_khalimov(@gmail.com; ORCID ID: http://orcid.org/0000- 0003-0254-5015.

MyTrauniiine TeCTyBaHHS NOJITHK KEPYBAHHSI 0CTYIIOM
I'. I1. Yepnega, 1. B. Xanimos

AHoTtanisi: OmHMMH 3 HaWCKIIAJHINIMX, BaXCUIMBUX Ta HEBII'€MHUX CKJIAJOBHX Cy4acHOI KOMI'IOTEpHOI Oe3leku €
CHCTEeMHU KEpyBaHHs JIOCTYIy. 3aBJlaHHA CHUCTEMH KEpYBaHHS IOCTYIIOM YacTO OMMCYETHCS 3 TOUKM 30pYy 3aXHCTy pecypciB
CHCTEeMH IIPOTH HEBIANOBiJHOro abo HeOakaHOro AOCTYHy KopucryBaua. IIpore, BelMKa CTYHiHb CHIJIBHOTO BHKOPHCTAHHS
MOJKE NEPELIKOJNTH 3aXHUCTy PEecypciB, TAKMM YMHOM, JOCUTbH J€TajbHA IOJITHKA KePYBaHHS JIOCTYIIOM HOBHHHA JJO3BOJISTH
BUOOpumMii 0OMiH iH(OpMAaLi€0, KOIM B HOro BiJICYTHICTb, CHIJIbHE BUKOPHCTAHHS MOXKE BBa)XKATHCS 3aHAATO PU3MKOBAHUM B
uinomy. ITomunkosi koHpiryparii, HecripaBHi IONITHKY, a TaK caMO HEIONIKU B pealti3allii mporpamMHoro 3a0e3rneueHHs MOXYTh
MIPU3BECTH 10 IJI00ATBHOI HE3aXUINEHOCTi. BUsBIEHHS BiAMiHHOCTEH MK crienm@ikamisMu HOMITHK 1 1X mepenrdadyBaHUMH
GyHKLIIMM Mae BUpilIaJbHE 3HAYCHHS, TOMY IO NpaBWIIbHA peaii3alis i 3a0e3NedeHHs JOTPUMAaHHS MOJITHK KOHKPETHOrO
JI0IaTKa 3aCHOBaHI Ha IepeayMoBi, 10 crienudikanii JaHoi MONITHKK € MPAaBUIBHUMH. B pe3ynbraTi MomiTHky criermgikaii,
IpeJICTaBIIeHI MOJEISMH, ITOBHHHI IIPOHTH CyBOPY IEPEBIpKyY 1 Jieranizalilo MUIIXOM CUCTEMAaTHYHUX INEPEBIPOK 1 TECTyBaHb,
mo0 rapaHTyBaTH, IO crenu@ikamii TOoIiTHK IifiCHO BiANOBiNaloTh Oa’kaHHSAM TBopLiB. [lepeBipka BiAMOBIIHOCTI MOJITHK i
MozieNiel KOHTPOJIO JIOCTYITY HETpUBiaibHA 1 KpUTHYHA 3aB/aHHs. | OHUM 3 BaXKIMBHX aCHEKTiB TAKOi NEepeBipKU € (hopManbHa
HepeBipka Ha HEIOCIIiIOBHICTb 1 HEIIOBHOTY y MOJIEJI, 1 BUMOTH O€3MeKH MOJIITHKY, TOMY 1110 MOZEJb KOHTPOIIO JIOCTYIy Ta ii
peaizanist He 000B'SI3KOBO SIBHO BUPAXAIOTh MOJITUKH, SIKi TAKOX MOXYTh OyTH NPUXOBaHi, BOYJ0BaHI IUIIXOM 3MilllyBaHHS 3
O0OMEKEHHSAMH IIPAMOr0 JOCTYITy 200 IHIIOro JOCTYITy MOJIENI YIIPaBIIiHHS.

Karo4doBi ciaoBa: xepyBaHHA JOCTYIIOM; CUCTEMH KOHTPOJIO JOCTYIy; MyTalliliHE TECTYBAaHHS; TECTYBaHHSA CHCTEM
KEPYBaHHS JIOCTYIIOM; MOJIITHKH.

MyTannonHoe TeCTHPOBaHHE MOJINTHK YIPaBJIeHUs JOCTYNOM
I'. I1. Yepnesa, I1. B. Xanumos

AHHOTAUMSA: OL[HI/IMI/I H3 CaMbIX CJIOKHBIX, BAXXHBIX W HCOTHEMJICMBIX COCTaBJISAIOLIUX COBpeMeHHOﬁ KOMHL}OTepHOﬁ
0€30MMacCHOCTH SIBJISIFOTCS CHCTEMBI yrpasJ€HHA OOCTYIIA. 38.}18.‘18. CUCTEMBI YIIPaBJICHUSA NOCTYIIOM YacCTO OIMCBIBACTCSA C TOUKU
3pCHHUA 3allUTbl PECYpCOB CUCTEMbI IIPOTHB HECOOTBETCTBYIOLICIO HIIM HEXKEJIATCJIBHOI'O I0CTYyIIAa II0Jb30BaTelIsdl. OZ[HaKO,
0oJIbIlIas CTENEHb COBMECTHOIO HCIOIB30BAHMS MOXKET ITOMEIIATh 3allUThI pECYpCOB, TaKUM 06pa30M, JOBOJIBHO noz[p06Ha5{
TOJINTHUKA YIPABJICHUST OOCTYIIOM JOJDKHA II03BOJIATH H36HpaTeJ’IBHBIﬁ obMeH PIH(i)OpMaL[PIefI, Koraza B €ro OTCYTCTBHEC,
COBMECTHOE HCIIOJIb30BAHUE MOXET CUMUTATHCSA CIMIIKOM PHUCKOBAHHBIM B IICJIOM. JloxxHbIE KOHCbHpraI_II/IH, HCHUCIIpaBHbIC
TIOJIMTHUKH, a TaK XK€ HEAOCTATKH B pe€ain3aliuy IIPOrpaMMHOro obecrieuyeHus MOTr'yT IIPUBECTU K ri00a1bHOM HEC3AIHIICHHOCTH.
Brissnenue pa3J’lH‘-IHﬁ MEXAY CHeI_II/ICbI/IKaL[I/IHMI/I IIOJIUTUK U UX NPEATIOoIara€MbIMU (byHKL[I/IﬂMI/I HUMECT PCIIAIOIICE 3HAYCHUE, TaK
KaK IIpaBUJIbHaA pe€ajin3alus U obecrieueHue CO6J'I}OI[CHI/I$[TIOJINTUK KOHKPETHOI'O IIPUIIOKEHUSI OCHOBAHbI Ha IIPEATIOCBIIKE, YTO
Cl'IeI_II/I(i)I/IKaLII/II/I I[aHHOﬁ TIOJINTUKU SBJIAIOTCA IIPaBUJIBHBIMH. B pe3ynbpTaTte IMOJIUTHKU CHeL(I/I(bI/IKaL[I/II/I, TNPEACTaBJICHBL
MOACIISIMHA, OOJIXKHBI HpOﬁTH CTPOr'yro IpOBEPKY U JICrajlnu3alluu IIyTeéM CUCTEMATUYCCKHUX IIPOBEPOK U TeCTHpOBaHHﬁ, YTOOBI
rapanTupoBarb, 4TO CHGI_II/I(l)I/IKaLII/II/I TIOJIUTHUK Z[eﬁCTBPITeJ'IBHO COOTBETCTBYIOT KCJIAHUIO CO3JIaTeJ'Ieﬁ. HpOBepKa COOTBECTCTBUA
TIOJIMTUK U Moz[eneﬁ KOHTPOJIA A0CTYyIla HETPUBUAJIbHAA U KPUTUYCCKAA 3a1a4a. n OJHUM M3 BAXXHBIX aCIICKTOB TaKON IIPOBEPKU
ABJIACTCA q)opmaanaﬂ IIPpOBEPKA Ha HCIIOCICAOBATCIIBHOCTh U HEIIOJIHOTY B MOJACIH, U Tpe60BaHI/I5{ 0e30MmacHOCTH IIOJIMTHUKH,
TaK KaK MOZCJIb KOHTPOJIS AOCTYIIAa U €€ peajin3alus HE 00513aT€JIBHO SBHO BBIPAXKArOT IIOJIMTUKHU, KOTOPBHIE TAKKXE MOr'YyT OBITH
CKPBITBI, BCTPOCHHBIC ITYTEM CMCIINBAHUSA C OrPaHUYCHUAMU ITPSAMOI'O 10CTYIIa WKW MHOT'O JOCTYIIa MOACIIN YIIPpaBJICHUS.

KamoueBblie caoBa: YHpaBJICHUE NOCTYIIOM; CUCTEMbI KOHTPOJISA AOCTYIIa; MYTAlTMOHHOE TECTUPOBAHUC,; TCCTUPOBAHUEC
CUCTEM YIIPABJICHUS NOCTYIIOM; IIOJIUTUKHU.

122

