Advanced Information Systems. 2021. Vol. 5, No. 1

ISSN 2522-9052

UDC 004.82: 517.977.5

Lev Raskin, Oksana Sira, Yurii Parfeniuk

doi: 10.20998/2522-9052.2021.1.08

National Technical University “Kharkiv Polytechnic Institute, Kharkiv, Ukraine

SELECTION OF THE OPTIMUM ROUTE IN AN EXTENDED
TRANSPORTATION NETWORK UNDER UNCERTAINTY

Abstract. Relevance. For a given values set of extensive transport network sections lengths an exact method has been
developed for finding optimal routes. The method provides an approximate solution when the initial data - are random
variables with known distribution laws, as well as if these data are not clearly specified. Fora special case with a normal
distribution of the numerical characteristics of the network, solution is brought to the final results. Method. An exact
method of deterministic routing is proposed, which gives an approximate solution in case of random initial data. The
method is extended to the case when the initial data are described in theory of fuzzy sets terms. The problem of stability
assessing of solutions to problems of control the theory under conditions of uncertainty of initial data is considered.
Results. A method of optimal routes finding is proposed when the initial data are deterministic or random variables with
known distribution densities. A particular case of a probabilistic - theoretical description of the initial data is considered
when can be obtained a simple solution of problem. Proposed method for obtaining an approximate solution in the general
case for arbitrary distribution densities of random initial data. The situation is common when the initial data are not clearly
defined. A simple computational procedure proposed for obtaining a solution. A method for stability assessing of solutions
to control problems adopted under conditions of uncertainty in the initial data, is considered.

Keywords: transport network; optimal route; initial data - random or fuzzy numbers; stability of solutions to control

problems.

Introduction

The problem of optimal route finding represents an
integral part of a more general, so-called, transport
problem of linear programming [1].

Formulation of the problem. The problem
statement is as follows: there are some given points of a

certain product manufacturing 4, 4,,..., 4, and points

of this product consumption By,B,,...,B,. For each

., -
manufacturing point 4; there it is given g; volume of
manufacturing, i=1,2,...,m and for each point B; of
consumption b; — the amount of consumption is also
expected. So it is supposed to be known of product
transportation routes from producers to consumers and
there it must be set the appropriate matrix of values for
the average cost of a product unit transportation
i=12,...,m, j=12,..,n.Itisrequired to find a matrix
X =(x;;) of values for planned transportation volumes

that minimizes

and satisfies the next constraints:

M=

Il
—_

xy-=al-, i=1,m, lelzb/’ j=1,n,
J i=1

N

m
Z 4; =
i=1

Materials and methods. It is clear that the total
average cost of transportation, which determines
efficiency of plan X, depends upon a set of values (Cy),
that are determined by routes connecting the points of
manufacturing and consumption. The problem of
forming a route for any pair of manufacturers -

bj.
1

J

consumer is one of the variants in general problem of
the scheduling theory and for the particular case under
consideration was mentioned in [2-4].

However, in the general case for distributed
transport systems of high dimension, it was not
considered. In this regard, the task of constructing
optimal routes is urgent. The position of manufacturing
points and product consumption is given. Each pair of
these points is connected by a route made up of a set of
sections specified by the points of their start and end.

Formally, it is natural to describe the problem
model using a directed graph, the vertices of which
correspond to route intermediate points, and to the arcs -
the sections between these points. The length of each
arc determines a quantitative measure efficiency of the
corresponding section using in the desired route
connecting manufacturing point and point of
consumption.

The task is to find sequence of passage the selected
sections set, total measure efficiency of which
determines the best (in the chosen sense) route. If all the
points are numbered, then it is convenient to specify
each of the sections set with the numbers (i, j) points at
beginning and at the end of this section. In this case, the
triple of numbers (i, k, j) defines a pair of sequentially
connected sections (i, k) and (k, j). If the intermediate
point k between points i, j is not the only possible one,
then the problem of its best choice arises.

Supposed that as a measure of the usage
efficiency in the route is selected by average value of a
cargo unit transportation through this section and the
predetermined values set of that measure in a matrix
C = C;. This value Cj is defined by following rule: the
number gives a measure of section efficiency with a
starting point / and endpoint j, C;; =0 and Cy =M
(M - large number), if items i and j belong to different

arcas. Then the best intermediate point £* between
points i and j can be chosen using the relation
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Cpr +Cpr, = gg{rg{cﬂc +Cy s (1)
where K — quantity of intermediate points between
iandj.

Operation (1) introduced for two separated
adjacent segments can be summarized as a sequence of
portions of arbitrary length. For this purpose, we use the
matrix commutation operation [5]. For two arbitrary
matrices A and B of dimension nxn, we introduce the
matrix commutation operation ® by the formula
C=A4A®B,

C; =rrgn(Cik +Cy ), i=

For an arbitrary system of n points, we define
matrix C(l) = (Ci(jl)) according to the rule formulated
above. Then we calculate

c? ) g 3)

The elements of C(z) matrix, calculated by the
formula (2) define length of the most effective in
accordance with the selected measure for Two-step
paths between all pairs of points (i, j).

Let us look at a simple example. Let the route
between point of manufacturing and consumption point
pass through one of three intermediate points (Fig. 1).

/N

Fig. 1. Route system from point 1 to point 5
The values of average transportation cost for

transport network segments, shown in Fig. 1, will be
introduced into C*" matrix:

1

2
-
4

5

M E4E=1F NN

EqEdEqEI=]
ZIZ|oZ|w|w
ol o~
o|N[o|o|Z|w

M

Let us perform operation (3) taking into account
(2). Wherein:

el el et
|1 = min =

el el
_ {(0+0), (4+M), (3+M),}
= min =0;

(5+M), (M+M)

oty (ehct)
12 = min
el et
_[(0+4), (4+0), (3+M),
= min =4,
(5+M), (M+M)
o () el et ey,
Ci3'=min 0 o) (1), D) -
(C14 +Cy ) (CIS +C53)
=mm{(ow), (4+M), (3+0), }=3_

(5+M), (M+M)

R
(C<>+Cg4>) ( e (4))

_mm{(ms) (4+M), (3+M), }

(5+0), (M+M

)
C(z)z - (C( )+C1(5 ) ( ) (C13 +C35)
15 (C1(4)+C£5)) ( 1(5)+C())

=min{(ouw), (4+6), (3+8), }:10;

(5 + 7), (M + 0)
) - -l s
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Let us summarize the results obtained in a matrix C®:

n

-
o
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Thus, the optimal route from point 1 to the point 5
passes through an intermediate point 2 and has a
measure of effectiveness - 10.

The introduced commutation operation can be used
to find optimal route of arbitrary length by recurrent
calculating in sequence of matrices:

C(3) C(k”)

~c@ecl, —cWech @

The formulated problem of optimal route finding
becomes much more complicated if the initial data has
uncertainty. The solution of problem under these
conditions is important for theoretical and practical
interest.

The aim of work is to construct a computational
procedure for solving the problem of finding optimal
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routes under conditions when the initial data have
random variables with known distribution laws. In
accordance to this, we will assume that the cost of
transportation for each section Cj; is a random variable

with a known distribution density ¢;; (Cj;) -

Main results

Let us give some simplest example of possible
solving problem technology for finding optimal route
for a transport network, shown in Fig. 1. In this task let
us assume to be known the densities of distribution
¢U (Cy- ), i=1,2,3,4; j=2,3,4,5. Then with basics on

well-known rules of probability theory, we find the

Oiks (Ciks)» Ciks = Cig + s,

k=2,3,4. As the optimal criterion of route using some
probability that is a random value of passing on this
route exceeds the threshold, the allowable value, we will
calculate

density distribution

P[(Ciys = Ciy +Cys ) > Cp | =
i (5)
= j s (Cixs ) dCiys, K =2,3,4.
Cn

The best route will be that one for which
probability of exceeding the threshold will be the least.

This technology can be difficult to implement even
in this simplest particular case by the need to find an
analytical expression for the density ¢l_-1- (Gj) by taking

integral

¢lk]( lk/) J.d)zk ik ¢k/( ikj ~ )dC

with subsequent use in (5). In this case, analytical
expression for the compositional distribution density
¢zk;( i) will be more complicated than expressions

for the composition elements ¢, (C;.) and ¢k; (Cij) -

This means that the recurrent solution of a more general
problem in accordance with technology (4) at each
subsequent step will be more difficult than at previous
one.

Note, however, that in some special cases a simple
solution to the problem is possible if, for example, the
random variables are distributed according to normal
distribution law. Suppose that in the example considered
above, random values of transportation costs are
distributed normally and the corresponding densities
have the form:

012 (Crp) = 1

exp{—(C12—4)2/8},

-2

_g

¢13(C13)=\/%'3CXP{—(C13—3)2/18},
¢14(C14)=é'gexp{—(cmé)z/z},
¢25(C25)=\/%'367413{—(6'25—6)2/18},

¢35(C35)=\/%.467413{—(%5—8)2/32},
¢45(C45)=\/;—neXp{—(C45—7)2/2},

Let define expression for density distribution of
composite random variables Cjj,

0125 (Cras) = 0125 (Cra +Cas) =
1

- Wexp{—[%s —(4+ 6)}2/(2(4+9))} =

1
_ mexp{—(clzs —10)2/26};

0135(Ci3s) =0(C3 +Cs5) =
1

g Lo+ fa0+10) -

exp|~(Cizs 1)’ /50];

!
N

0145 (Cas) = d145 (Cig +Cys) =

B m(ll 2 eXp{_[CMS —(5+7)]2/(2(1+1))} =

+1)
\/;—nexp{ (Cas - /4}

Let us now calculate values of optimality criterion
for routes using (5). Let us choose the threshold value
for cost of transportation equal to maximum of the
average values of composite costs with a certain weight
coefficient o.. Then

Cip = o-max (10;1512) =12 = 1513.8;
o=lI.
P( lk/>C17) jd)zk/( lk])d
(%-%)2
= o
[ W oacy, - ©
Cr 2nojy .(Cikj_éikj)/cikj:”

o0 o0
1 —u2/ 2 1 —u2/ 2
= — du = —¢€ du.
J \2n '[ 27
(Cr—Cig) oy difj
The best route corresponds to minimum value of
probability of exceeding the critical value, that is,

maximum of lower limit values a;; in integral (6) for
different routes. Thus, the value a = max{al-k-}
ikj k g

becomes a criterion for route choosing. Let us calculate

a;; value:

Cr —Cips

G125

_138-10 3.8
1395 3.61

a5 = =1.052,
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Cp-Cpis 13.8-11 2.8

a = 2;20.56,
135 o135 5 5
Cp—Cys 13.8-12 1.
g5 = 1 145 = 3.8 =—8=1.277,
O145 20'5 1.41

*
a, = m]?x{l.OSZ; 0.56; 1.277} = ayys.

Thus, the route through intermediate point 4,
which has worst value of average transportation cost,
turned out to be the best due to minimum level of
uncertainty in estimating transportation cost.

It is clear that in the particular case considered, the
execution of procedure (2) - (3) for choosing best route
does not cause any difficulties. An approximate
(empirical) solution to problem in the general case can be
obtained if in some natural way the method for

calculating criterion for choosing a route a?kj is simplified.

The value of this criterion is maximum if the values of
transportation average cost and variance of this value are

minimal. In this regard, let us choose m;; = Cy; oy,

value. The best route (ikj) corresponds to minimum

value n;; . In the considered example, we have

Ni2s5 = Cp5-01p5 =10-3.61=36.1;
Ni3s = Ci35 0135 =11:5=155;
Nigs = Ciys 0145 =12-1.41 =16.2.

Thus, the route (1-4-5) is the best again. The
possibility of practical use of this criterion is determined
by the simplicity of calculating the mean values and
variances of random variables for any density of their
distribution. Finally, note that introduction of a new
criterion m expands the possibilities of using proposed

technology for optimal route choosing, to the case when
uncertainty of initial data is described in terms of the
fuzzy sets theory [5-8]. Indeed, let the membership

function p(C) be used to describe the fuzzy value of
transportation cost C Let us introduce the function [9]

f(e)=n(©)/ [ u(c)dc.

This function has all the properties distribution
density of random variable: it is not negative and

[, r(cydc=1.

This function now calculates the expected value in
usual way (mathematical expectation analogue) and
variation (analogue of the standard deviation) which is
used to calculate m criterion, after which described
technology of finding optimal route is implemented.

Let us consider another important problem that
usually arises when solving control problems. The
modern theory of management traditionally assumptions
that there is an uncertainty in the description of control
system u environment in which the system operates.

Taking this uncertainty into account is necessary
when solving the problem of optimal control itself and

when assessing its quality. In this case, question of how
initial uncertainty affects on solution correctness of
control problem and on possibility of retaining this
solution in the presence of uncertainty, i.e on solution
stability.

Various definitions of stochastic stability concept
are well-known. A solution is called stable by
probability if it is possible to find such a level of initial
uncertainty at which the probability of deviation from
decision does not exceed the given one [10] A solution
is called stable in terms mathematical expectation of a
norm if it is possible to find such a level of perturbation
at which the probability of deviations of the norm from
the adopted decision does not exceed a given value [11].
In accordance with this, property of control system to
develop correct solution and keep it in a certain range of
random distortions of input information is called the
stochastic stability of the system [12].

The problem of assessing stochastic stability has
principal importance when solving optimal control
problems under conditions of uncertainty in initial data.
The criteria and method for solving this problem
essentially depends on whether the set of solutions Q is
continuous or discrete. In cases where this set is
continuous, then the following criteria is usually used to
assess stochastic stability [13 — 15]:

a) probability that the deviation from norm of
objective function from its optimal value does not
exceed the given one;

b) distortion degree of optimal solution;

¢) deviation variance of objective function
numerical value from the optimal value obtained in
absence of uncertainty.

If the set of solutions is discrete, then natural
criterion for assessing stability is probability of optimal
solution distortion in the presence of uncertainty.
Considering a method for solving the problem in this
case. let us introduce the necessary notation.

Let a discrete set Q consist of n elements, that is

0= {q]ana"'aqn} '
continuous factorial space,
corresponds to a vector w.

The numerical values of vector component is
determined and the state of environment in system at a
given time.

The decision-making algorithm 1is a certain
operator A that maps points in the space Q to the
elements of decisions Q set. Thus, a specific vector of
environment states and system w; corresponds to the

Let Q be a multidimensional
each point of which

decision ¢; determined by rule:

q; = A(wl-), w;eQ, g €0, OQ,i=12,..,n
In accordance with this, space Q is divided into n

domains Q;,Q,,...,Q, so

Q= {w: weQ, A(w) = ql-} i=12,..,n,
wuQ, =0, NQ; =0
Let i be the optimal solution corresponding to

current situation. Then probability of this optimal
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decision will be made in c. a)
presence of initial information

uncertainty Pl'o is equal to ' ea
hitting“ in vector w ——— / P —ay
probability, determining state S /
of the environment and system, £ _g

in this situation, into range

quo .

In this case, if f(;v) -

multidimensional distribution

. ~ i o) 00 i 10 T
density of w vector, then G -5 G L 6" - G Cleay

Pgy = | f(iv)div.

Q%’o

Fig. 2. Graphical displays of the route selection problem

(0)
a1

It follows that problem of assessing stability is P(G < C2)=IC(O)_a] Edcl -
reduced to solving the following two problems: finding :
an analytical description of range €); boundaries and min Cg0)+a2,C](O)+a]) A0,
probability calculating of vector w hit probabilities 1 2 72
inside each of the ranges. + j gdcl j gdcz =

The first of these problems solution in the general Cgo)—az 1 2
case is hardly feasible, but in specific special cases it 1
can be obtained. = —(Cgo) —a, — Cl(o) +a )+

Consider, for example, the simplest problem of 2ay

optimal route choosing out of two possible ones. In this

X X X min(Cgo) +ay ,C](O) +a )
case, possible solutions set Q contains two elements: 1

. . 0
q — first route is selected, g, — second route is selected. + j 2 (Cg ) +a, -C )dCl = )
Let us set a one-coordinate phase space whose points A0)_, 4
represent to cost of transporting a unit of cargo from a 2
supplier to a consumer. Let the random values of _L( (0 0 ) ( (0) )
transportation costs for first and second routes be evenly 2a G mm -G a aya, Gt
distributed: 0 ©) 0
x| | min[C5"7 +a,,C +al)j—(C —az)}—
2L, Cle[C](O)—al,C](O)+al}, K ( 2 1 2
a
H(G)=17" D1l (0 0 \V(A0)
0, Cl¢|:cl(0)_alacl(0)+al:|; 2 (mm(Cz raG +al)) —(C2 _az) '
1 (0) (0) The analysis of the obtained expression shows that
22 G e [Cz —ay, G+ } > its maximum value equal to 1 (corresponds to the
£(Cy)=47"72 (8)  absolute solution stability) is achieved when (Fig. 3, a):
(0) _ (0)
0. Ce|d) o e |. Oy =) 0 hatis 90 g 1,
Suppose that Cl(o) <C£0)

) 6)
and therefore first route is chosen 0:1

as optimal one. Let us estimate N
the stability of this solution. C'+a, /

Possible options for O g
graphical display of the task are il &

shown in Fig. 2. The shaded areas
in Fig. 2 contain sets of points e

(Cy,Cy), for which C; <C,.
Probabilities of getting into these /
areas determine the consideration
degree of choice ¢;. These

" z G = * O
probabilities are calculated by the o -a Cl”+q o ;
formula Fig. 3. Graphical display of options for route selection tasks
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Wherein P(C1 £C2)=P(C1 >cz).

The proposed method for solutions stability
calculating of control problems, adopted under
conditions of uncertainty in initial data, can be used
when choosing for optimal option from a discrete set of
possible ones. Let us determine, for example, stability
of made decision in problem of optimal route choosing
considered above. Let us simplify it as much as possible
by reducing it to a two-alternative one. Let there are two
competing routes for which random cost of
transportation distribution densities are given (7), (8)
with specific values

=11, g =5, A =12, 4y =2.

Let the first route be chosen as optimal one. Let us
determine solution stability. Specifying the general
relation (9) for this case, we have

C(O)+a C

2 2 1 2 1
P(C] < Cz) = j chz j gdcl =

C(O)—a : C(O)—a :

2 2 1 1
1 Cg0)+a2 ( (0)
- Cy -0y )dC -
daya, J 0, 7270 @ it (10)

= (2a2C£0) - (C](O) -a )2a2 )/(4a1a2) =
_ (cg‘))— c 1 q ) /2a1 —1/2+ (cg‘))— c” ) /2a1 .

Wherein P(C) <C,)=1/2+1/10=0.6.
The obtained value of stability in this particular case

is not large, due to small difference between C](O) u Cgo)

and large value of @, parameter. The proposed method for

assessing solution stability of the problem can be
generalized in case when the cost requirement for the
selected route is formed more stringently, particularly:
kC; < C,, k>1.In this case, the calculation formula (10)

for assessing stability will take the form:

C£0)+a2 C2/k 1
P(kC <Cy) = —dC, [ —dG=
0, 2% 0 2
C2 —ap C] —a
1 A C 0
= S 22+ fic, =
dajay’cy’)-a \ k

= (2 azcgo)/k _(CI(O) —q )2a2 )/(4‘11‘12 )=

_ A -V 4a 1 . cl® k-l
24 2 2a, '

Moreover, for the initial  data
(C](O) =11, Cgo) =12, a; =5) and k=1,09 the value
of stability level, the solution will be equal to

09-11 1 . .
P(kC; < C )=1+Mz— that is, the choice
1="277 10 2

same

of first route is unstable.

Directions for further research may be related to
consideration of problems in cases where similar ones
are inaccurate in the sense of Pavlak [16=19].

A possible approach to solving the problems
arising in this case was proposed in [20, 21].

Conclusions

Proposed method for finding optimal routes when
the initial data are deterministic or random variables
with known distribution densities.

A particular case of a probabilistic-theoretical
description of the initial data is considered, when a
simple solution to the problem can be obtained.

The given method provides an approximate
solution in the general case for arbitrary distribution
densities of random initial data.

Considered situation when initial data are not
clearly defined. A simple computational procedure for
obtaining a solution is gained.

A method for assessing the solutions stability to
control problems adopted under conditions of
uncertainty in initial data is considered.
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Bu6ip onTuManbHOro MapLIpyTy y po3nofijieHiil TpaHCIOPTHIiN Mepeski B yMOBaX HeBU3HAYEHOCTI
JI. T. Packin, O. B. Cipa, 1O. JI. ITapdentok

AHoTanisi. AKryaabHicTs. [l 3agaHoro HaOoOpy 3Hau€Hb JOBXKHH JIJITHOK PO3rallyXKe€HOi TPAHCHOPTHOI Mepeii
po3pobieHnii TOYHMI METOZ BiLIyKaHHS ONTHMaJbHUX MapuIpyTiB. Merox 3a0e3redye OTpUMaHHS HaOJIM)KEHOTO pillIeHHS,
KOJIM BUIXIJHI JlaHi - BUIIQJKOBI BEIWYMHM 3 BiJOMHMH 3aKOHAMH PO3IOIUTY, a TaKOX, SKIIO L JaHi 3afaHi HewiTko. J{ist
OKPEMOr'0 BUIAJIKY 3 HOPMAJIBHUM PO3IIOAITIOM YHCIOBUX XapaKTEPUCTHK MEPEeXi PIllIeHHs JOBEJICHO JI0 KIHIEBUX PE3yNIbTATIB.
Mertoa. 3anporoHOBaHO TOYHHH METOJ JETEPMIHOBAHOI MapLIpyTu3auii, 0 Jae HaONwKeHe pilIeHHs, SKIIO BUXIJHI AaHi
BUIAJKOBI. MeTox mommpeHnii Ha BUITAJOK, KOJHM BHXIJHI JaHI OMUCaHi B TepMiHaX Teopii HEYITKUX MHOXHUH. Po3risiHyTO
npoOieMy OLIHKM CTiMKOCTI pillleHb 3ajad Teopil ynpaBiliHHA B yMOBaX HEBM3HAYEHOCTI BUXIIHUX HaHuUX. Pe3yiabrarm.
3anporoHOBaHO METO]| BiAIIYKaHHS ONTUMaJIbHUX MapILIPYTiB, KOJIM BUXi/HI JaHi - leTepMiHOBaHi a00 BUNA/IKOBI BEJIMYUHU 3
BIZIOMMMH LIUIBHOCTSIME PO3MOZLTY. Po3riisiHyTo okpemuil BUIAJOK TE€OPETHUKO-IMOBIPHICHOIO OIMCY BUXIJHMX JAHHMX, KOIH
MO)Ke OyTM OTpPUMaHO INpOCTe pillleHHs 3ajaui. 3alpOINOHOBAHO METOJ OTPUMAHHSA HAOIMKEHOro DIICHHS B 3arajlbHOMY
BUIAIKY JUIS JOBIJIBHUX IMUIBHOCTI PO3MOALTY BHIAJKOBUX BHXIJIHUX IaHUX. PO3MIISIHYTO cUTyalilo, KOJM BUXIZHI JaHi
BU3HAUCHI HEYITKO. 3alporOHOBAHO INPOCTa OOUMCIIOBAJbHA IPOLENypa OTPUMAHHS pillleHHSA. Po3risHyTo MeTon OLiHKK
CTIHKOCTI pillleHb 33a1a4 YIPaBIiHHA, IPUHHATHX B yMOBaX HEBU3HAUCHOCTI BUXIJHUX JaHUX.

Karo4doBi cioBa: TpaHCIOpTHa Mepexa; ONTHMAJIbHUI MapLIpyT; MOXiJHI JaHi — BUNAAKOBI abo HeWiTKi 4ucina;
CTIHKICTB pIIICHB 3a]1a4 yIpaBIIiHHS.

Br100p ONTHMAILHOTO MAPIIPYTA B Pa3BEeTBJICHHON TPAHCIIOPTHOH CETH B YCJI0BHSIX HEONPeAeJIeHHOCTH
JI. T. Packus, O. B. Cepas, 1O. JI. TTapdentok

AHHOTAanMsA. AKTyanbHOCTh. JIns 3amaHHOrO HaOopa 3HAYEHHH [UIMH YJacTKOB Pa3BETBICHHOW TPAHCIIOPTHOH CETH
pa3paboTaH TOYHBII METO/ OTHICKaHHS ONTUMAJIBHBIX MapIIpyToB. MeTo obecrieunBaeT MoTydeHie IpHOIMKEHHOTO PEIIeHNS,
KOIJ]a UCXOJHbIE JaHHBIE — CIIydaiiHble BEJIMUMHbI C U3BECTHBIMU 3aKOHAMH PACIPENCNICHNs], a TAKKE, €CIIM 9T TaHHbIE 3aJaHbl
HedeTko. /[ yacTHOro ciydas ¢ HOPMalbHBIM paclpelieNIeHMEM YHUCIOBBIX XapaKTEpUCTUK CETU peIICHHE IO0BEIEHO M0
KOHEUHBIX pe3ynbTatoB. Meton. IIpemioxkeH TOYHBIA METO/ AETEPMUHHPOBAHHOW MapIIpyTH3aIMH, TAalOMnil MpuOImKeHHOe
pellieHye, eciau MCXOIHbIE NaHHbIE CilydaiiHbl. MeTol pacnpocTpaHeH Ha cilydail, Korja HCXOJHbI€ J[AHHBbIE OIUCaHbl B
TEPMHUHAX TEOPHH HEUETKHX MHOXECTB. PaccMoTpeHa mpobieMa OLEHKH YCTOHYMBOCTH PEICHUH 3a/1ad TEOPUH YIIPABICHUS B
YCIIOBUSX HEOIPEAEICHHOCTH UCXOAHBIX TaHHbIX. Pe3ynbrathl. [Ipeuioxken METO OTHICKaHUS ONTUMAJIBHBIX MapUIpyTOB, KOTJa
HCXOJHbIE JaHHblE — JETePMUHHUPOBAHHBIC WIM CllydaliHble BEJIMYMHBl C W3BECTHBIMU IUIOTHOCTSIMU pacCIpeieICHusl.
PaccMoTpeH 4acTHBI citydail TeOpeTHKO-BEPOSTHOCTHOI'O ONMCAHMUS HCXOIHBIX TaHHBIX, KOTJIa MOXKET OBITh ITOIy4E€HO IIPOCTOE
pemenue 3amaun. [IpewioxkeH MeTos MOTydeHus] MPUOIKEHHOIO PeIIeHNs B 00LIeM CiTydae /U NPOU3BOJIBHBIX IUIOTHOCTEH
pacrpenesieHus CIydalHbIX HCXOIHBIX JaHHbBIX. PaccMOTpeHa cuTyalys, KOrJa MCXOIHBbIE IAaHHBIC OIpEAEICHbl HEUYeTKO.
[Ipemioxkena npocTasi BBIYMCIUTENIbHAS IPOLIEAypa MOAY4YeHHsl pelieHus. PaccMOTpeH MeTo OLEHKH YCTOMYMBOCTH pELICHUi
3a]1a4 yIpaBJIeHHsl, IPUHSTBIX B YCIOBUAX HEOIPEIECICHHOCTH UCXOAHBIX JaHHbIX.

KamwueBblie cjoBa: TPAHCIIOPTHAs CETh; ONTUMAJILHBIN MapumpyT; UCXOAHbIC NAaHHBIC — cnyqaﬁm)le WM HCUCTKUC
qucia, yCTOﬁ‘-IHBOCTB peHIeHI/Iﬁ 3a/1a4q yripaBJICHU:L.
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